-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path4.median-of-two-sorted-arrays.py
96 lines (87 loc) · 2.18 KB
/
4.median-of-two-sorted-arrays.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#
# @lc app=leetcode id=4 lang=python3
#
# [4] Median of Two Sorted Arrays
#
# https://leetcode.com/problems/median-of-two-sorted-arrays/description/
#
# algorithms
# Hard (35.59%)
# Likes: 21595
# Dislikes: 2441
# Total Accepted: 1.7M
# Total Submissions: 4.9M
# Testcase Example: '[1,3]\n[2]'
#
# Given two sorted arrays nums1 and nums2 of size m and n respectively, return
# the median of the two sorted arrays.
#
# The overall run time complexity should be O(log (m+n)).
#
#
# Example 1:
#
#
# Input: nums1 = [1,3], nums2 = [2]
# Output: 2.00000
# Explanation: merged array = [1,2,3] and median is 2.
#
#
# Example 2:
#
#
# Input: nums1 = [1,2], nums2 = [3,4]
# Output: 2.50000
# Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.
#
#
#
# Constraints:
#
#
# nums1.length == m
# nums2.length == n
# 0 <= m <= 1000
# 0 <= n <= 1000
# 1 <= m + n <= 2000
# -10^6 <= nums1[i], nums2[i] <= 10^6
#
#
#
# @lc code=start
class Solution:
def findMedianSortedArrays(self, nums1: List[int], nums2: List[int]) -> float:
l1, l2 = len(nums1), len(nums2)
if len(nums1) > len(nums2):
nums1, nums2 = nums2, nums1
l1, l2 = l2, l1
total = l1 + l2
half = total // 2
avg = (half * 2) == total
if l1 == 0:
if avg:
return (nums2[half] + nums2[half - 1]) / 2
return nums2[half]
if nums1[-1] <= nums2[0]:
if l1 == l2:
return (nums1[-1] + nums2[0]) / 2
if avg:
return (nums2[half - l1] + nums2[half - l1 - 1]) / 2
return nums2[half - l1]
lp, rp = 0, l1 - 1
while True:
m1 = lp + (rp - lp) // 2
m2 = half - m1 - 2
fl = nums1[m1] if m1 >= 0 else -inf
fr = nums1[m1 + 1] if m1 + 1 < l1 else inf
sl = nums2[m2] if m2 >= 0 else -inf
sr = nums2[m2 + 1] if m2 + 1 < l2 else inf
if fl <= sr and sl <= fr:
if avg:
return (max(fl, sl) + min(fr, sr)) / 2
return min(fr, sr)
elif fl > sr:
rp = m1 - 1
else:
lp = m1 + 1
# @lc code=end