-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathdominator_tree.cpp
85 lines (72 loc) · 1.71 KB
/
dominator_tree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
/*
Dominator Tree (Lengauer-Tarjan)
Tested: SPOJ EN
Complexity: O(m log n)
*/
struct graph {
int n;
vector<vector<int>> adj, radj;
graph(int n) : n(n), adj(n), radj(n) {}
void add_edge(int src, int dst) {
adj[src].push_back(dst);
radj[dst].push_back(src);
}
vector<int> rank, semi, low, anc;
int eval(int v) {
if (anc[v] < n && anc[anc[v]] < n) {
int x = eval(anc[v]);
if (rank[semi[low[v]]] > rank[semi[x]])
low[v] = x;
anc[v] = anc[anc[v]];
}
return low[v];
}
vector<int> prev, ord;
void dfs(int u) {
rank[u] = ord.size();
ord.push_back(u);
for (auto v : adj[u]) {
if (rank[v] < n)
continue;
dfs(v);
prev[v] = u;
}
}
vector<int> idom; // idom[u] is an immediate dominator of u
void dominator_tree(int r) {
idom.assign(n, n);
prev = rank = anc = idom;
semi.resize(n);
iota(semi.begin(), semi.end(), 0);
low = semi;
ord.clear();
dfs(r);
vector<vector<int>> dom(n);
for (int i = (int)ord.size() - 1; i >= 1; --i) {
int w = ord[i];
for (auto v : radj[w]) {
int u = eval(v);
if (rank[semi[w]] > rank[semi[u]])
semi[w] = semi[u];
}
dom[semi[w]].push_back(w);
anc[w] = prev[w];
for (int v : dom[prev[w]]) {
int u = eval(v);
idom[v] = (rank[prev[w]] > rank[semi[u]] ? u : prev[w]);
}
dom[prev[w]].clear();
}
for (int i = 1; i < (int)ord.size(); ++i) {
int w = ord[i];
if (idom[w] != semi[w])
idom[w] = idom[idom[w]];
}
}
vector<int> dominators(int u) {
vector<int> S;
for (; u < n; u = idom[u])
S.push_back(u);
return S;
}
};