-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME V Practice algorithm
70 lines (64 loc) · 2.11 KB
/
README V Practice algorithm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
Matrix power (pow(A,n) where A is a matrix)application problem
1 get ith fibonacci value in O(lgn) time, the idea can be extend to problem fast power !
sample code:
Matrix power(int n) {
Matrix ret = new Matrix(row, col, 1);
Matrix matrix = new Matrix(this);
while (n > 0) {
if (n % 2 == 1) {
ret = ret.multiply(matrix);
}
n = n / 2;
matrix = matrix.multiply(matrix);
}
return ret;
}
Partition & quick select sample code:
form I:
def partition(self, array, st, end):
i, j, key = st, st+1, array[st]
for j in range(st+1,end+1):
if key > array[j]:
i += 1
array[i], array[j] = array[j], array[i]
array[i], array[st] = array[st], array[i]
return i
def quick_select(self, array, st, end, k):
if end >= st:
pivot = self.partition(array, st, end)
if pivot == k:
return
elif pivot > k:
return self.quick_select(array, st, pivot-1, k)
else:
return self.quick_select(array, pivot+1, end, k)
else:
return
form II:
def find_pivot(self, nums, st, end):
key, i = nums[st], st
for j in range(i+1, end+1):
if key < nums[j]:
i += 1
nums[i], nums[j] = nums[j], nums[i]
nums[st], nums[i] = nums[i], nums[st]
return i - st
def quick_select(self, nums, st, end, k):
if end > st:
pivot = self.find_pivot(nums, st, end)
if pivot == k:
return
elif pivot < k:
return self.quick_select(nums, st + pivot + 1, end, k - pivot - 1)
else:
return self.quick_select(nums, st, st + pivot - 1, k)
prime factorization:
result, i = [], 2
while i * i <= num:
while not num % i:
num = int(num/i)
result.append(i)
i += 1
if num != 1:
result.append(num)
return result