-
Notifications
You must be signed in to change notification settings - Fork 0
/
elastic_ddp.py
63 lines (51 loc) · 1.64 KB
/
elastic_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Code From https://pytorch.org/tutorials/intermediate/ddp_tutorial.html
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.optim as optim
from torch.nn.parallel import DistributedDataParallel as DDP
class ToyModel(nn.Module):
def __init__(self):
super(ToyModel, self).__init__()
self.net1 = nn.Linear(10, 10)
self.relu = nn.ReLU()
self.net2 = nn.Linear(10, 5)
def forward(self, x):
return self.net2(self.relu(self.net1(x)))
def demo_basic():
dist.init_process_group("nccl")
rank = dist.get_rank()
print(f"Start running basic DDP example on rank {rank}")
# create model and move it to GPU with id rank
device_id = rank % torch.cuda.device_count()
model = ToyModel().to(device_id)
ddp_model = DDP(model, device_ids=[device_id])
loss_fn = nn.MSELoss()
optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)
optimizer.zero_grad()
outputs = ddp_model(torch.randn(20, 10))
labels = torch.randn(20, 5).to(device_id)
loss_fn(outputs, labels).backward()
optimizer.step()
dist.destroy_process_group()
print(f"END training on rank {rank}.")
if __name__ == "__main__":
demo_basic()
'''
NODE01:
torchrun \
--nnodes=2 \
--nproc_per_node=8 \
--rdzv_id=100 \
--rdzv_backend=c10d \
--rdzv_endpoint=NODE01:29400 \
elastic_ddp.py
NODE02:
torchrun \
--nnodes=2 \
--nproc_per_node=8 \
--rdzv_id=100 \
--rdzv_backend=c10d \
--rdzv_endpoint=NODE01:29400 \
elastic_ddp.py
'''