-
-
Notifications
You must be signed in to change notification settings - Fork 6
/
SampleDiffusion.py
670 lines (537 loc) · 23.5 KB
/
SampleDiffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
# Imports
import subprocess, sys, os
import torch
import random
from pathlib import Path
import folder_paths
import importlib
import yaml
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import audio_diffusion_pytorch
import diffusion
#import v_diffusion_pytorch
import folder_paths as comfy_paths
import k_diffusion
import soundfile as sf
import torchaudio
from io import BytesIO
import hashlib
from server import PromptServer
from aiohttp import web
from folder_paths import models_dir, get_filename_list
from comfy.model_management import get_torch_device
def get_comfy_dir():
dirs = __file__.split('\\')
comfy_index = None
for i, dir in enumerate(dirs):
if dir == "ComfyUI":
comfy_index = i
break
if comfy_index is not None:
# Join the list up to the "ComfyUI" folder
return '\\'.join(dirs[:comfy_index+1])
else:
return None
comfy_dir = get_comfy_dir()
# ****************************************************************************
PromptServer.instance.app._client_max_size = 250 * 1024 * 1024 # 250 MB
# Add route for getting audio, duplicates view image but allows audio_input
"""
@PromptServer.instance.routes.get("/ComfyUI_Jags_Audiotools/audio")
async def view_image(request):
if "filename" in request.rel_url.query:
type = request.rel_url.query.get("type", "audio_input")
if type not in ["output", "input", "temp", "audio_input"]:
return web.Response(status=400)
output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), type)
if "subfolder" in request.rel_url.query:
full_output_dir = os.path.join(output_dir, request.rel_url.query["subfolder"])
if os.path.commonpath((os.path.abspath(full_output_dir), output_dir)) != output_dir:
return web.Response(status=403)
output_dir = full_output_dir
filename = request.rel_url.query["filename"]
filename = os.path.basename(filename)
file = os.path.join(output_dir, filename)
if os.path.isfile(file):
return web.FileResponse(file, headers={"Content-Disposition": f"filename=\"{filename}\""})
return web.Response(status=404)
"""
config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "config.yaml")
if not os.path.exists(config):
with open(config, "w") as f:
yaml.dump({"model_folder": f"{os.path.join(models_dir, 'audio_diffusion')}"}, f)
with open(config, "r") as f:
config = yaml.safe_load(f)
models_folder = config["model_folder"]
# init and sample_diffusion lib load
libs = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), "libs")
#if not os.path.exists(os.path.join(comfy_dir, 'custom_nodes/ComfyUI_Jags_Audiotools/libs')):
#os.makedirs(os.path.join(comfy_dir, 'custom_nodes/ComfyUI_Jags_Audiotools/libs'))
#libs = os.path.join(comfy_dir, 'custom_nodes/ComfyUI_Jags_Audiotools/libs')
#if not os.path.exists(os.path.join(comfy_dir, libs)):
# os.system (os.path.join(comfy_dir, libs))
#sys.path.append(os.path.join(comfy_dir, libs ))
from libs.util.util import load_audio, crop_audio
from libs.dance_diffusion.api import RequestHandler, Request, ModelType
from libs.diffusion_library.sampler import SamplerType
from libs.diffusion_library.scheduler import SchedulerType
from libs.dance_diffusion.dd.model import DDModelWrapper
from libs.dance_diffusion.dd.inference import DDInference
from scipy.fft import fft
from pydub import AudioSegment
from itertools import cycle
# PIL to Tensor
def pil2tensor(image):
return torch.from_numpy(np.array(image).astype(np.float32) / 255.0).unsqueeze(0)
# ****************************************************************************
# sound play functionality for audio nodes
# needs further testing
def save_audio(audio_out, output_path: str, sample_rate, id_str:str = None):
out_files = []
if not os.path.exists(output_path):
os.makedirs(output_path)
ix = 1
for sample in audio_out:
while True:
output_file = os.path.join(output_path, f"sample_{id_str}_{ix}.wav" if id_str else f"sample_{ix}.wav")
if not os.path.exists(output_file):
break
ix += 1
open(output_file, "a").close()
output = sample.cpu()
torchaudio.save(output_file, output, sample_rate)
out_files.append(output_file)
ix += 1
return out_files
os.environ['PYGAME_HIDE_SUPPORT_PROMPT'] = "hide"
try:
from pygame import mixer
except ModuleNotFoundError:
# install pixelsort in current venv
subprocess.check_call([sys.executable, "-m", "pip", "install", "pygame"])
from pygame import mixer
mixer.init()
def PlaySound(path, volume):
mixer.music.load(path)
mixer.music.set_volume(volume)
mixer.music.play()
#testing the audio file for playback
# ****************************************************************************
# * NODES *
# ****************************************************************************
class AudioData:
def __init__(self, audio_file) -> None:
# Extract the sample rate
sample_rate = audio_file.frame_rate
# Get the number of audio channels
num_channels = audio_file.channels
# Extract the audio data as a NumPy array
audio_data = np.array(audio_file.get_array_of_samples())
self.audio_data = audio_data
self.sample_rate = sample_rate
self.num_channels = num_channels
def get_channel_audio_data(self, channel: int):
if channel < 0 or channel >= self.num_channels:
raise IndexError(f"Channel '{channel}' out of range. total channels is '{self.num_channels}'.")
return self.audio_data[channel::self.num_channels]
def get_channel_fft(self, channel: int):
audio_data = self.get_channel_audio_data(channel)
return fft(audio_data)
class AudioFFTData:
def __init__(self, audio_data, sample_rate) -> None:
self.fft = fft(audio_data)
self.length = len(self.fft)
self.frequency_bins = np.fft.fftfreq(self.length, 1 / sample_rate)
def get_max_amplitude(self):
return np.max(np.abs(self.fft))
def get_normalized_fft(self) -> float:
max_amplitude = self.get_max_amplitude()
return np.abs(self.fft) / max_amplitude
def get_indices_for_frequency_bands(self, lower_band_range: int, upper_band_range: int):
return np.where((self.frequency_bins >= lower_band_range) & (self.frequency_bins < upper_band_range))
def __len__(self):
return self.length
# ****************************************************************************
class AudioInference():
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
"""
Input Types
"""
return {
"required": {
"audio_model": ("DD_MODEL", ),
"mode": (['Generation', 'Variation'],),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 10000000000, "step": 1}),
"steps": ("INT", {"default": 50, "min": 1, "max": 10000000000, "step": 1}),
"sampler": (SamplerType._member_names_, {"default": "V_IPLMS"}),
"sigma_min": ("FLOAT", {"default": 0.1, "min": 0.0, "max": 1280, "step": 0.01}),
"sigma_max": ("FLOAT", {"default": 50, "min": 0.0, "max": 1280, "step": 0.01}),
"rho": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 128.0, "step": 0.01}),
"scheduler": (SchedulerType._member_names_, {"default": "V_CRASH"}),
"noise_level": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
"seed": ("INT", {"default": -1}),
},
"optional": {
"input_audio": ("AUDIO", {}),
"input_audio_path": ("STRING", {"default": '', "forceInput": True}),
},
}
RETURN_TYPES = ("LIST", "AUDIO", "INT")
RETURN_NAMES = ("out_paths", "🎙️audio", "sample_rate")
FUNCTION = "do_sample"
CATEGORY = "🎙️Jags_Audio/AudioInference"
def do_sample(self, audio_model, mode, batch_size, steps, sampler, sigma_min, sigma_max, rho, scheduler, input_audio_path='', input_audio=None, noise_level=0.7, seed=-1):
wrapper, inference = audio_model
device_type_accelerator = get_torch_device()
device_accelerator = torch.device(device_type_accelerator)
device_offload = get_torch_device()
crop = lambda audio: crop_audio(audio, wrapper.chunk_size, 0)
if input_tensor is None:
input_audio_path = None if input_audio_path == '' else input_audio_path
load_input = lambda source: crop(load_audio(device_accelerator, source, wrapper.sample_rate)) if source is not None else None
audio_source = load_input(input_audio_path)
else:
if len(input_tensor.shape) == 3:
# remove first (batch) dimension
input_tensor = input_tensor[0]
if input_tensor.shape[0] != 2:
channels, sample_length = input_tensor.shape
input_tensor = input_tensor.view(1, sample_length).repeat(2, 1)
input_tensor = input_tensor.to(get_torch_device())
audio_source = crop(input_tensor)
request_handler = RequestHandler(device_accelerator, device_offload, optimize_memory_use=False, use_autocast=True)
seed = seed if(seed!=-1) else torch.randint(0, 4294967294, [1], device=device_type_accelerator).item()
print(f"Using accelerator: {device_type_accelerator}, Seed: {seed}.")
request = Request(
request_type=mode,
model_path=wrapper.path,
model_type=ModelType.DD,
model_chunk_size=wrapper.chunk_size,
model_sample_rate=wrapper.sample_rate,
model_wrapper=wrapper,
model_inference=inference,
seed=seed,
batch_size=batch_size,
audio_source=audio_source,
audio_target=None,
mask=None,
noise_level=noise_level,
interpolation_positions=None,
resamples=None,
keep_start=True,
steps=steps,
sampler_type=SamplerType[sampler],
sampler_args={'use_tqdm': True},
scheduler_type=SchedulerType[scheduler],
scheduler_args={
'sigma_min': sigma_min,
'sigma_max': sigma_max,
'rho': rho,
}
)
response = request_handler.process_request(request)#, lambda **kwargs: print(f"{kwargs['step'] / kwargs['x']}"))
paths = save_audio(response.result, f"{comfy_dir}/temp", wrapper.sample_rate, f"{seed}_{random.randint(0, 100000)}")
return (paths, response.result, wrapper.sample_rate)
class SaveAudio():
def __init__(self):
self.output_dir = comfy_paths.output_directory
self.type = os.path.basename(self.output_dir)
@classmethod
def INPUT_TYPES(cls):
"""
Save Audio files
"""
return {
"required": {
"audio": ("AUDIO", ),
"output_path": ("STRING", {"default": '[time(%Y-%m-%d)]', "multiline": False}),
"filename_prefix": ("STRING", {"default": "ComfyUI"}),
"filename_delimiter": ("STRING", {"default":"_"}),
"filename_number_padding": ("INT", {"default":4, "min":1, "max":9, "step":1}),
"filename_number_start": (["false", "true"],),
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 10000000000, "step": 1}),
"id_string": ("STRING", {"default": 'ComfyUI'}),
"tame": (['Enabled', 'Disabled'],)
},
"optional": {
},
}
RETURN_TYPES = ("STRING", "AUDIO")
RETURN_NAMES = ("path","🎙️audio" )
FUNCTION = "audio_save"
OUTPUT_NODE = True
CATEGORY = "🎙️Jags_Audio"
def audio_save(self, audio, output_path=None, filename_prefix="ComfyUI", filename_delimiter='_', filename_number_padding=4, filename_number_start='false', sample_rate='_', id_string='_', tame='Enabled'):
delimiter = filename_delimiter
number_padding = filename_number_padding if filename_number_padding > 1 else 4
return (SaveAudio(audio_out=(0.5 * audio).clamp(-1,1) if(tame == 'Enabled') else audio, output_path=output_path, sample_rate=sample_rate, id_str=id_string), )
class LoadAudio():
@classmethod
def INPUT_TYPES(s):
audio_extensions = ['mp3','wav']
input_dir = folder_paths.get_input_directory()
files = []
for f in os.listdir(input_dir):
if os.path.isfile(os.path.join(input_dir, f)):
file_parts = f.split('.')
if len(file_parts) > 1 and (file_parts[-1] in audio_extensions):
files.append(f)
return {
"required": {
"audio": (sorted(files),),
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 10000000000, "step": 1}),
},
"optional": {
},
}
RETURN_TYPES = ("AUDIO", "INT" )
RETURN_NAMES = ("🎙️audio","sample_rate")
FUNCTION = "LoadAudio"
OUTPUT_NODE = True
CATEGORY = "🎙️Jags_Audio"
def LoadAudio(self, audio,):
file = folder_paths.get_annotated_filepath(audio)
# TODO: support more formats
if (file.lower().endswith('.mp3')):
audio_file = AudioSegment.from_mp3(file)
else:
audio_file = AudioSegment.from_file(file, format="wav")
audio_data = AudioData(audio_file)
return (audio_data,)
#file_path = f'{comfy_dir}/custom_nodes/SampleDiffusion/audio_input/{file_path}'
@classmethod
def IS_CHANGED(self, audio, **kwargs):
audio_path = folder_paths.get_annotated_filepath(audio)
m = hashlib.sha256()
with open(audio_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def VALIDATE_INPUTS(self, audio, **kwargs):
if not folder_paths.exists_annotated_filepath(audio):
return "Invalid audio file: {}".format(audio)
return True
"""
alternates
"""
#--------------------------------------------------------------------------------
class LoadAudioModelDD():
@classmethod
def INPUT_TYPES(cls):
"""
Input Types
"""
global models_folder
models = os.listdir(models_folder)
models = [x for x in models if x.endswith('.ckpt')]
return {
"required": {
""
"model": (models, {}),
"chunk_size": ("INT", {"default": 65536, "min": 32768, "max": 10000000000, "step": 32768}),
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 10000000000, "step": 1}),
"optimize_memory_use": (['Enabled', 'Disabled'], {"default": 'Enabled'}),
"autocast": (['Enabled', 'Disabled'], {"default": 'Enabled'}),
},
"optional": {
},
}
RETURN_TYPES = ("DD_MODEL", )
RETURN_NAMES = ("audio_model", )
FUNCTION = "DoLoadAudioModelDD"
OUTPUT_NODE = True
CATEGORY = "🎙️Jags_Audio/Audiotools"
def DoLoadAudioModelDD(self, model, chunk_size, sample_rate, optimize_memory_use, autocast):
global models_folder
model = os.path.join(models_folder, model)
device = get_torch_device()
wrapper = DDModelWrapper()
wrapper.load(model, device, optimize_memory_use, chunk_size, sample_rate)
inference = DDInference(device, device, optimize_memory_use, autocast, wrapper)
loaded_model = (wrapper, inference)
return (loaded_model, )
class PreviewAudioFile():
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
"""
Input Types
"""
return {
"required": {
"audio": ("AUDIO", ),
"output_path": ("STRING", {"default": f'{comfy_dir}/output/audio_samples'}),
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 10000000000, "step": 1}),
"id_string": ("STRING", {"default": 'ComfyUI'}),
"tame": (['Enabled', 'Disabled'],)
},
"optional": {
},
}
RETURN_TYPES = ("AUDIO", "STRING", )
RETURN_NAMES = ("🎙️audio","paths", )
FUNCTION = "PreviewAudioFile"
OUTPUT_NODE = True
CATEGORY = "🎙️Jags_Audio"
def PreviewAudioFile(self, paths):
# fix slashes
paths = [path.replace("\\", "/") for path in paths]
# get filenames with extensions from paths
filenames = [os.path.basename(path) for path in paths]
return {"result": (filenames,), "ui": filenames}
class PreviewAudioTensor():
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"audio": ("AUDIO",),
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 10000000000, "step": 1, "forceInput": True}),
"tame": (['Enabled', 'Disabled'],)
},
"optional": {
},
}
RETURN_TYPES = ("AUDIO","LIST", )
RETURN_NAMES = ("🎙️audio","paths", )
FUNCTION = "PreviewAudioTensor"
OUTPUT_NODE = True
CATEGORY = "🎙️Jags_Audio"
def PreviewAudioTensor(self, audio, sample_rate, tame):
# fix slashes
paths = save_audio((0.5 * audio).clamp(-1,1) if(tame == 'Enabled') else audio, f"{comfy_dir}/temp", sample_rate, f"{random.randint(0, 10000000000)}")
paths = [path.replace("\\", "/") for path in paths]
# get filenames with extensions from paths
paths = [os.path.basename(path) for path in paths]
return {"result": (paths,), "ui": paths}
class MergeTensors():
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"audio_1": ("AUDIO",),
"audio_2": ("AUDIO",),
"audio_1_volume": ("FLOAT", {"default": 1, "min": 0, "max": 1, "step": 0.01}),
"audio_2_volume": ("FLOAT", {"default": 1, "min": 0, "max": 1, "step": 0.01}),
},
"optional": {
"sample_rate": ("INT", {"default": 44100, "min": 1, "max": 10000000000, "step": 1, "forceInput": True}),
},
}
RETURN_TYPES = ("AUDIO", "INT")
RETURN_NAMES = ("🎙️audio", "sample_rate")
FUNCTION = "do_merge"
CATEGORY = "🎙️Jags_Audio/Helpers"
def do_merge(self, audio_1, audio_2, audio_1_volume, audio_2_volume, sample_rate):
# Ensure both batches have the same size and number of channels
assert audio_1.size(0) == audio_2.size(0) and audio_1.size(1) == audio_2.size(1), "Batches must have the same size and number of channels"
# Pad or truncate the shorter waveforms in the batches to match the length of the longer ones
max_length = max(audio_1.size(2), audio_2.size(2))
tensor_1_padded = torch.zeros(audio_1.size(0), audio_1.size(1), max_length)
tensor_2_padded = torch.zeros(audio_2.size(0), audio_2.size(1), max_length)
tensor_1_padded[:, :, :audio_1.size(2)] = audio_1
tensor_2_padded[:, :, :audio_2.size(2)] = audio_2
# Mix the batches with specified volumes
mixed_tensors = audio_1_volume * tensor_1_padded + audio_2_volume * tensor_2_padded
return (mixed_tensors, sample_rate)
class StringListIndex:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"list": ("LIST", ),
"index": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
}
RETURN_TYPES = ("STRING",)
FUNCTION = "doStuff"
CATEGORY = "🎙️Jags_Audio/Helpers"
def doStuff(self, list, index):
return (list[index],)
class AudioIndex:
def __init__(self) -> None:
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"path": ("STRING", {"default": ""}),
"index": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
},
}
RETURN_TYPES = ("AUDIO", "INT", "STRING")
RETURN_NAMES = ("🎙️audio", "sample_rate", "filename")
FUNCTION = "doStuff"
CATEGORY = "🎙️Jags_Audio/Helpers"
def doStuff(self, path, index):
if not os.path.exists(path):
raise Exception("Path does not exist")
audios = []
for audio in os.listdir(path):
if any(audio.endswith(ext) for ext in [".wav", ".flac"]):
audios.append(audio)
filename = audios[index]
audio, sample_rate = torchaudio.load(os.path.join(path, filename))
# make stereo if mono
audio = audio.unsqueeze(0)
audio.to(get_torch_device())
return (audio, sample_rate, filename)
class samplerate:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"Value": ("INT", {
"default": 44100,
"min": 1,
"max": 10000000000,
"step": 1
},
)
},
}
RETURN_TYPES = ("INT",)
RETURN_NAMES = ("sample_rate",)
CATEGORY = "🎙️Jags_Audio/Helpers"
FUNCTION = "get_rate"
def get_rate(self, Value):
if value == "":
value = 0
if value == "undefined":
value = 0
#if not an int
if not int(value):
value = 0
return (value,)
#return (int(Value),)
NODE_CLASS_MAPPINGS = {
"GenerateAudioSample": AudioInference,
"SaveAudioTensor": SaveAudio,
"LoadAudioFile": LoadAudio,
"PreviewAudioFile": PreviewAudioFile,
"PreviewAudioTensor": PreviewAudioTensor,
"GetStringByIndex": StringListIndex,
"LoadAudioModel (DD)": LoadAudioModelDD,
"MixAudioTensors": MergeTensors,
"GetAudioFromFolderIndex": AudioIndex,
"samplerate": samplerate,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"GenerateAudioSample": "Jags-AudioInference",
"SaveAudioTensor": "Jags_SaveAudio",
"LoadAudioFile": "Jags_LoadAudio",
"PreviewAudioFile": "Jags_PreviewAudioFile",
"PreviewAudioTensor": "Jags_PreviewAudioTensor",
"GetStringByIndex": "Jags_StringListIndex",
"LoadAudioModel (DD)": "Jags_LoadAudioModelDD",
"MixAudioTensors": "Jags_MergeTensors",
"GetAudioFromFolderIndex": "Jags_AudioIndex",
"samplerate": "Jags_SampleRate",
}