-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfool_eval.pyx
92 lines (73 loc) · 2.14 KB
/
fool_eval.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import MultiNEAT as NEAT
from render_vox import render
import image_rec
from image_rec import run_image
import numpy
from cpython cimport bool
sz_x = 20
sz_y = 20
sz_z = 20
coords = 6
coordinates = numpy.zeros((sz_x,sz_y,sz_z,coords))
x_grad = numpy.linspace(-1,1,sz_x)
y_grad = numpy.linspace(-1,1,sz_y)
z_grad = numpy.linspace(-1,1,sz_z)
for _x in xrange(sz_x):
for _y in xrange(sz_y):
for _z in xrange(sz_z):
coordinates[_x,_y,_z,0]=1.0 #x_grad[_x]
coordinates[_x,_y,_z,1]=x_grad[_x]
coordinates[_x,_y,_z,2]=y_grad[_y]
coordinates[_x,_y,_z,3]=z_grad[_z]
coordinates[_x,_y,_z,4]=x_grad[_x]**2+y_grad[_y]**2+z_grad[_z]**2
coordinates[_x,_y,_z,5]=x_grad[_x]**2+z_grad[_z]**2
coordinates=coordinates.reshape((sz_x*sz_y*sz_z,coords))
target_class = 681
def evaluate(genome,bool debug=False,save=None):
verbose=True
if verbose:
print 'building...'
net = NEAT.NeuralNetwork()
genome.BuildPhenotype(net)
genome.CalculateDepth()
cdef int depth = genome.GetDepth()
print depth
error = 0
# do stuff and return the fitness
tot_vox = sz_x*sz_y*sz_z
voxels = numpy.zeros((tot_vox,4))
if verbose:
print 'generating voxels...'
cdef long int val
for val in xrange(tot_vox):
net.Flush()
net.Input(coordinates[val])
for _ in xrange(depth):
net.Activate()
o = net.Output()
voxels[val,:]=o
voxels = voxels.reshape((sz_x,sz_y,sz_z,4))
thresh = 0.5
voxels[0,:,:,0]=thresh-0.01
voxels[-1,:,:,0]=thresh-0.01
voxels[:,0,:,0]=thresh-0.01
voxels[:,-1,:,0]=thresh-0.01
voxels[:,:,0,0]=thresh-0.01
voxels[:,:,-1,0]=thresh-0.01
if verbose:
print 'rendering images'
img1 = render(voxels,45,0,save=save)
img2 = render(voxels,90,5)
img3 = render(voxels,135,0)
img4 = render(voxels,180,5)
img5 = render(voxels,225,0)
imgs = [img1,img2,img3,img4,img5]
#plt.imshow(img)
#plt.show()
if verbose:
print 'running image rec'
results = run_image(imgs)
if debug:
return imgs,results
results = results.prod(axis=0)
return float(results[target_class]),results #voxels.flatten().sum()