From b2b48dd42aa91a1259ab731e82c77606fd87c4e3 Mon Sep 17 00:00:00 2001 From: Jack BAI <60613238+BiEchi@users.noreply.github.com> Date: Sat, 22 Jul 2023 14:31:04 +0800 Subject: [PATCH 1/8] Update lm.py: a cleaner way of finding the embedding layer in the model fixed a [FIXME], see code for details. --- src/ecco/lm.py | 15 ++++++++++++++- 1 file changed, 14 insertions(+), 1 deletion(-) diff --git a/src/ecco/lm.py b/src/ecco/lm.py index 6f131de..b07ee83 100644 --- a/src/ecco/lm.py +++ b/src/ecco/lm.py @@ -346,7 +346,20 @@ def generate(self, input_str: str, hs_list.append(hs) # First hidden state is the embedding layer, skip it - # FIXME: do this in a cleaner way + # if one shape is different from others, it should be the embedding layer, and it always + # appear at the beginning or the end + if hs_list[0].shape != hs_list[1].shape: + embedding_states = hs_list[0] + hidden_states = torch.cat(hs_list[1:]) + elif hs_list[-1].shape != hs_list[-2].shape: + embedding_states = hs_list[-1] + hidden_states = torch.cat(hs_list[:-1]) + # revert the hidden_states order + hidden_states = torch.flip(hidden_states, [0]) + else: + hs_list = torch.cat(hs_list, dim=0) + embedding_states = hs_list[0] + hidden_states = hs_list[1:] hs_list = torch.cat(hs_list, dim=0) embedding_states = hs_list[0] hidden_states = hs_list[1:] From f8ccbf4a193e46d58821769c5dae2f041fc7cfd1 Mon Sep 17 00:00:00 2001 From: Jack BAI <60613238+BiEchi@users.noreply.github.com> Date: Sat, 22 Jul 2023 14:32:35 +0800 Subject: [PATCH 2/8] Update lm.py: some prints and support for OPT --- src/ecco/lm.py | 19 ++++++++++++++----- 1 file changed, 14 insertions(+), 5 deletions(-) diff --git a/src/ecco/lm.py b/src/ecco/lm.py index b07ee83..d32c41c 100644 --- a/src/ecco/lm.py +++ b/src/ecco/lm.py @@ -86,7 +86,11 @@ def __init__(self, self.model_type = self.model_config['type'] embeddings_layer_name = self.model_config['embedding'] embed_retriever = attrgetter(embeddings_layer_name) - self.model_embeddings = embed_retriever(self.model) + if type(embed_retriever(self.model)) == torch.nn.Embedding: + self.model_embeddings = embed_retriever(self.model).weight + else: + self.model_embeddings = embed_retriever(self.model) + # print(self.model) self.collect_activations_layer_name_sig = self.model_config['activations'][0] except KeyError: raise ValueError( @@ -346,6 +350,7 @@ def generate(self, input_str: str, hs_list.append(hs) # First hidden state is the embedding layer, skip it + # FIXME: do this in a cleaner way # if one shape is different from others, it should be the embedding layer, and it always # appear at the beginning or the end if hs_list[0].shape != hs_list[1].shape: @@ -356,13 +361,12 @@ def generate(self, input_str: str, hidden_states = torch.cat(hs_list[:-1]) # revert the hidden_states order hidden_states = torch.flip(hidden_states, [0]) + # print(hidden_states.shape) else: hs_list = torch.cat(hs_list, dim=0) embedding_states = hs_list[0] hidden_states = hs_list[1:] - hs_list = torch.cat(hs_list, dim=0) - embedding_states = hs_list[0] - hidden_states = hs_list[1:] + tokens_hs_list.append(hidden_states) setattr(output, attributes, tokens_hs_list) @@ -379,6 +383,7 @@ def generate(self, input_str: str, # Turn activations from dict to a proper array activations_dict = self._all_activations_dict + # print(activations_dict) for layer_type, activations in activations_dict.items(): self.activations[layer_type] = activations_dict_to_array(activations) @@ -530,6 +535,7 @@ def _get_embeddings(self, input_ids) -> Tuple[torch.FloatTensor, torch.FloatTens def _attach_hooks(self, model): # TODO: Collect activations for more than 1 step + # print(self.model) if self._hooks: # skip if hooks are already attached @@ -547,6 +553,7 @@ def _attach_hooks(self, model): name=name: self._get_activations_hook(name, input_)) # Register neuron inhibition hook + # print(name) self._hooks[name + '_inhibit'] = module.register_forward_pre_hook( lambda self_, input_, name=name: \ self._inhibit_neurons_hook(name, input_) @@ -602,7 +609,9 @@ def _inhibit_neurons_hook(self, name: str, input_tensor): of the neurons indicated in self.neurons_to_inhibit """ - layer_number = re.search("(?<=\.)\d+(?=\.)", name).group(0) + # print(name.split('.')) + layer_number = int(re.search("(?<=\.)\d+(?=\.)", name).group(0)) + # print(layer_number, name) if layer_number in self.neurons_to_inhibit.keys(): # print('layer_number', layer_number, input_tensor[0].shape) From 4af19a29a549d7798445d314a82ab96507d3ccb0 Mon Sep 17 00:00:00 2001 From: HAO BAI Date: Tue, 1 Aug 2023 07:01:54 -0500 Subject: [PATCH 3/8] add fp16 support --- src/ecco/__init__.py | 11 +++++++---- src/ecco/attribution.py | 19 ++++++++++++++++--- src/ecco/lm.py | 39 +++++++++++++++++++++++++++++---------- 3 files changed, 52 insertions(+), 17 deletions(-) diff --git a/src/ecco/__init__.py b/src/ecco/__init__.py index 91c0ecc..cde3e4d 100644 --- a/src/ecco/__init__.py +++ b/src/ecco/__init__.py @@ -26,7 +26,10 @@ def from_pretrained(hf_model_id: str, hidden_states: Optional[bool] = True, activations_layer_nums: Optional[List[int]] = None, verbose: Optional[bool] = True, - gpu: Optional[bool] = True + gpu: Optional[bool] = True, + multi_gpu = False, + cache_dir = None, + torch_dtype=None ): """ Constructs a [LM][ecco.lm.LM] object based on a string identifier from HuggingFace Transformers. This is @@ -71,7 +74,7 @@ def from_pretrained(hf_model_id: str, else: config = load_config(hf_model_id) - tokenizer = AutoTokenizer.from_pretrained(hf_model_id) + tokenizer = AutoTokenizer.from_pretrained(hf_model_id, torch_dtype=torch_dtype) if config['type'] == 'enc-dec': model_cls = AutoModelForSeq2SeqLM @@ -80,7 +83,7 @@ def from_pretrained(hf_model_id: str, else: model_cls = AutoModel - model = model_cls.from_pretrained(hf_model_id, output_hidden_states=hidden_states, output_attentions=attention) + model = model_cls.from_pretrained(hf_model_id, output_hidden_states=hidden_states, output_attentions=attention, device_map="auto" if multi_gpu else None, cache_dir=cache_dir, torch_dtype=torch_dtype) lm_kwargs = { 'model_name': hf_model_id, @@ -90,6 +93,6 @@ def from_pretrained(hf_model_id: str, 'verbose': verbose, 'gpu': gpu} - lm = LM(model, tokenizer, **lm_kwargs) + lm = LM(model, tokenizer, torch_dtype=torch_dtype, **lm_kwargs) return lm diff --git a/src/ecco/attribution.py b/src/ecco/attribution.py index 198acb6..ea42942 100644 --- a/src/ecco/attribution.py +++ b/src/ecco/attribution.py @@ -1,4 +1,5 @@ from functools import partial +from time import time import torch from typing import Any, Dict from captum.attr import ( @@ -12,6 +13,8 @@ Deconvolution, LRP ) +import numpy as np +import numpy.linalg as la from torch.nn import functional as F import transformers @@ -97,12 +100,22 @@ def normalize_attributes(attributes: torch.Tensor) -> torch.Tensor: f"Please choose one of the methods: {list(ATTR_NAME_TO_CLASS.keys())}" ) + print("now running attribution in Capsum") ig = attr_method_class(forward_func=forward_func) - attributions = ig.attribute(inputs, target=prediction_id) + # print("ig is", ig) + time_start = time() + attributions = ig.attribute(inputs, target=prediction_id, n_steps=50) + # attributions = torch.tensor([0.1, 0.2, 0.3, 0.4]) + print("attributions shape", attributions.shape) + print("attribution " + attr_method + " takes time:", time() - time_start) if decoder_ is not None: # Does it make sense to concatenate encoder and decoder attributions before normalization? # We assume that the encoder/decoder embeddings are the same - return normalize_attributes(torch.cat(attributions, dim=1)) + normalized_attributes = normalize_attributes(torch.cat(attributions, dim=1)) else: - return normalize_attributes(attributions) + normalized_attributes = normalize_attributes(attributions) + + print("normalized_attributes is", normalized_attributes) + + return normalized_attributes diff --git a/src/ecco/lm.py b/src/ecco/lm.py index d32c41c..4b739a1 100644 --- a/src/ecco/lm.py +++ b/src/ecco/lm.py @@ -6,6 +6,7 @@ import torch import transformers from transformers import BatchEncoding +from time import time import ecco import numpy as np @@ -46,7 +47,8 @@ def __init__(self, collect_activations_flag: Optional[bool] = False, collect_activations_layer_nums: Optional[List[int]] = None, # None --> collect for all layers verbose: Optional[bool] = True, - gpu: Optional[bool] = True + gpu: Optional[bool] = True, + torch_dtype=None ): """ Creates an LM object given a model and tokenizer. @@ -64,6 +66,7 @@ def __init__(self, """ self.model_name = model_name self.model = model + self.torch_dtype = torch_dtype if torch.cuda.is_available() and gpu: self.model = model.to('cuda') @@ -86,11 +89,11 @@ def __init__(self, self.model_type = self.model_config['type'] embeddings_layer_name = self.model_config['embedding'] embed_retriever = attrgetter(embeddings_layer_name) + print(self.model) if type(embed_retriever(self.model)) == torch.nn.Embedding: self.model_embeddings = embed_retriever(self.model).weight else: self.model_embeddings = embed_retriever(self.model) - # print(self.model) self.collect_activations_layer_name_sig = self.model_config['activations'][0] except KeyError: raise ValueError( @@ -132,9 +135,11 @@ def _analyze_token(self, for attr_method in attribution_flags: # deactivate hooks: attr method can perform multiple forward steps - self._remove_hooks() + # self._remove_hooks() - # Add attribution scores to self.attributions + # Add attribution scores to self.attributionsp + # print which device the model is on + # print(self.model.device.type) self.attributions[attr_method].append( compute_primary_attributions_scores( attr_method=attr_method, @@ -217,7 +222,14 @@ def generate(self, input_str: str, viz_id = self.display_input_sequence(input_ids[0]) # Get model output - self._remove_hooks() # deactivate hooks: we will run them for the last model forward only + # self._remove_hooks() # deactivate hooks: we will run them for the last model forward only + # print the device of input_ids, attention_mask, and self.model + # print(f"input_ids.device: {input_ids.device}") + # print(f"attention_mask.device: {attention_mask.device}") + # print(f"self.model.device: {self.model.device}") + # print(f"self.model: {self.model}") + + time_start = time() output = self.model.generate( input_ids=input_ids, attention_mask=attention_mask, @@ -232,6 +244,7 @@ def generate(self, input_str: str, output_scores=True, **generate_kwargs ) + print("self.model.generate takes time: ", time() - time_start) # Get prediction logits for each chosen prediction id prediction_logits, prediction_ids = [], [] @@ -251,6 +264,7 @@ def generate(self, input_str: str, # Analyze each generated token self.attributions = defaultdict(list) # reset attributions dict + time_start = time() for pred_index, prediction_id in enumerate(prediction_ids): # First get encoder/decoder input embeddings @@ -266,7 +280,7 @@ def generate(self, input_str: str, if pred_index == len(prediction_ids) - 1: # -1 because we want to catch the inputs for the last generated token # attach hooks and run last forward step # TODO: collect activation for more than 1 step - self._attach_hooks(self.model) + # self._attach_hooks(self.model) extra_forward_kwargs = {'attention_mask': attention_mask, 'decoder_inputs_embeds': decoder_input_embeds} forward_kwargs = { 'inputs_embeds': encoder_input_embeds, @@ -327,7 +341,9 @@ def generate(self, input_str: str, cur_len += 1 - # Get encoder/decoder hidden states + print("self._analyze_token in the for loop takes time: ", time() - time_start) + + # Get encoder/decoder hidden states (don't take long) embedding_states = None for attributes in ["hidden_states", "encoder_hidden_states", "decoder_hidden_states"]: out_attr = getattr(output, attributes, None) @@ -451,7 +467,7 @@ def __call__(self, input_tokens: torch.Tensor): n_input_tokens = len(input_tokens['input_ids'][0]) # attach hooks - self._attach_hooks(self.model) + # self._attach_hooks(self.model) # model if self.model_type == 'mlm': @@ -528,7 +544,10 @@ def _get_embeddings(self, input_ids) -> Tuple[torch.FloatTensor, torch.FloatTens vocab_size = embedding_matrix.shape[0] one_hot_tensor = self.to(_one_hot_batched(input_ids, vocab_size)) - token_ids_tensor_one_hot = one_hot_tensor.clone().requires_grad_(True) + token_ids_tensor_one_hot = one_hot_tensor.clone().requires_grad_(True).to(dtype=self.torch_dtype) + + print("dtype of token_ids_tensor_one_hot:", token_ids_tensor_one_hot.dtype) + print("dtype of embedding_matrix:", embedding_matrix.dtype) inputs_embeds = torch.matmul(token_ids_tensor_one_hot, embedding_matrix) return inputs_embeds, token_ids_tensor_one_hot @@ -574,7 +593,7 @@ def _get_activations_hook(self, name: str, input_): dimensions (batch_size, sequence_length, neurons) """ # print('_get_activations_hook', name) - # pprint(input_) + # print(input_) # print(type(input_), len(input_), type(input_[0]), input_[0].shape, len(input_[0]), input_[0][0].shape) # in distilGPT and GPT2, the layer name is 'transformer.h.0.mlp.c_fc' # Extract the number of the layer from the name From ca0aa604cb286a82ff46dd7df9085229c3d554cd Mon Sep 17 00:00:00 2001 From: HAO BAI Date: Tue, 1 Aug 2023 07:06:56 -0500 Subject: [PATCH 4/8] tmep --- src/ecco/attribution.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/ecco/attribution.py b/src/ecco/attribution.py index ea42942..c90dba8 100644 --- a/src/ecco/attribution.py +++ b/src/ecco/attribution.py @@ -18,6 +18,7 @@ from torch.nn import functional as F import transformers +N_STEPS=25 ATTR_NAME_ALIASES = { 'ig': 'integrated_gradients', @@ -104,7 +105,7 @@ def normalize_attributes(attributes: torch.Tensor) -> torch.Tensor: ig = attr_method_class(forward_func=forward_func) # print("ig is", ig) time_start = time() - attributions = ig.attribute(inputs, target=prediction_id, n_steps=50) + attributions = ig.attribute(inputs, target=prediction_id, n_steps=N_STEPS) # attributions = torch.tensor([0.1, 0.2, 0.3, 0.4]) print("attributions shape", attributions.shape) print("attribution " + attr_method + " takes time:", time() - time_start) From 2fc266bf02569f6015bc2813758c4b05bed8ea6c Mon Sep 17 00:00:00 2001 From: HAO BAI Date: Sat, 12 Aug 2023 09:31:53 -0500 Subject: [PATCH 5/8] new working session --- src/ecco/attribution.py | 18 +++++++++--------- src/ecco/lm.py | 21 +++++++++++++-------- 2 files changed, 22 insertions(+), 17 deletions(-) diff --git a/src/ecco/attribution.py b/src/ecco/attribution.py index c90dba8..e62898f 100644 --- a/src/ecco/attribution.py +++ b/src/ecco/attribution.py @@ -18,7 +18,7 @@ from torch.nn import functional as F import transformers -N_STEPS=25 +# IG_N_STEPS=50 ATTR_NAME_ALIASES = { 'ig': 'integrated_gradients', @@ -101,22 +101,22 @@ def normalize_attributes(attributes: torch.Tensor) -> torch.Tensor: f"Please choose one of the methods: {list(ATTR_NAME_TO_CLASS.keys())}" ) - print("now running attribution in Capsum") + # print("now running attribution in Capsum") ig = attr_method_class(forward_func=forward_func) # print("ig is", ig) - time_start = time() - attributions = ig.attribute(inputs, target=prediction_id, n_steps=N_STEPS) - # attributions = torch.tensor([0.1, 0.2, 0.3, 0.4]) - print("attributions shape", attributions.shape) - print("attribution " + attr_method + " takes time:", time() - time_start) + # time_start = time() + # attributions = ig.attribute(inputs, target=prediction_id, n_steps=IG_N_STEPS) + attributions = ig.attribute(inputs, target=prediction_id) + # print("attributions shape", attributions.shape) + # print("attribution " + attr_method + " takes time:", time() - time_start) if decoder_ is not None: # Does it make sense to concatenate encoder and decoder attributions before normalization? # We assume that the encoder/decoder embeddings are the same normalized_attributes = normalize_attributes(torch.cat(attributions, dim=1)) else: - normalized_attributes = normalize_attributes(attributions) + normalized_attributes = normalize_attributes(attributions) - print("normalized_attributes is", normalized_attributes) + # print("normalized_attributes is", normalized_attributes) return normalized_attributes diff --git a/src/ecco/lm.py b/src/ecco/lm.py index 4b739a1..a19adf0 100644 --- a/src/ecco/lm.py +++ b/src/ecco/lm.py @@ -89,7 +89,7 @@ def __init__(self, self.model_type = self.model_config['type'] embeddings_layer_name = self.model_config['embedding'] embed_retriever = attrgetter(embeddings_layer_name) - print(self.model) + # print(self.model) if type(embed_retriever(self.model)) == torch.nn.Embedding: self.model_embeddings = embed_retriever(self.model).weight else: @@ -244,16 +244,16 @@ def generate(self, input_str: str, output_scores=True, **generate_kwargs ) - print("self.model.generate takes time: ", time() - time_start) + time_end = time() + # print("self.model.generate takes time: ", time_end - time_start) + gen_time = time_end - time_start # Get prediction logits for each chosen prediction id prediction_logits, prediction_ids = [], [] if output.__class__.__name__.endswith("EncoderDecoderOutput"): prediction_ids, prediction_scores = output.sequences[0][1:], output.scores - elif output.__class__.__name__.endswith("DecoderOnlyOutput"): prediction_ids, prediction_scores = output.sequences[0][n_input_tokens:], output.scores - else: raise NotImplementedError(f"Unexpected output type: {type(output)}") @@ -291,6 +291,7 @@ def generate(self, input_str: str, _ = self.model(**forward_kwargs) # Get primary attributions for produced token + # print("generating saliency results for token", pred_index) self._analyze_token( encoder_input_embeds=encoder_input_embeds, encoder_attention_mask=attention_mask, @@ -299,6 +300,7 @@ def generate(self, input_str: str, prediction_id=prediction_id ) + # Recomputing inputs ids, attention mask and decoder input ids if decoder_input_ids is not None: assert len(decoder_input_ids.size()) == 2 # will break otherwise @@ -340,8 +342,11 @@ def generate(self, input_str: str, self.attributions[k].insert(-1, np.zeros_like(self.attributions[k][-1])) cur_len += 1 + + time_end = time() + attribute_time = time_end - time_start - print("self._analyze_token in the for loop takes time: ", time() - time_start) + # print("self._analyze_token in the for loop takes time: ", time() - time_start) # Get encoder/decoder hidden states (don't take long) embedding_states = None @@ -433,7 +438,7 @@ def generate(self, input_str: str, 'lm_head': self.model.lm_head, 'model_type': self.model_type, 'device': self.device, - 'config': self.model_config}) + 'config': self.model_config}), gen_time, attribute_time def __call__(self, input_tokens: torch.Tensor): """ @@ -546,8 +551,8 @@ def _get_embeddings(self, input_ids) -> Tuple[torch.FloatTensor, torch.FloatTens one_hot_tensor = self.to(_one_hot_batched(input_ids, vocab_size)) token_ids_tensor_one_hot = one_hot_tensor.clone().requires_grad_(True).to(dtype=self.torch_dtype) - print("dtype of token_ids_tensor_one_hot:", token_ids_tensor_one_hot.dtype) - print("dtype of embedding_matrix:", embedding_matrix.dtype) + # print("dtype of token_ids_tensor_one_hot:", token_ids_tensor_one_hot.dtype) + # print("dtype of embedding_matrix:", embedding_matrix.dtype) inputs_embeds = torch.matmul(token_ids_tensor_one_hot, embedding_matrix) return inputs_embeds, token_ids_tensor_one_hot From 72405f6e528ecc2c6829055d7d66eaea7752ad4d Mon Sep 17 00:00:00 2001 From: HAO BAI Date: Tue, 22 Aug 2023 22:06:40 -0500 Subject: [PATCH 6/8] updated source --- src/ecco/attribution.py | 4 ++-- src/ecco/output.py | 24 ++++++++++++++---------- 2 files changed, 16 insertions(+), 12 deletions(-) diff --git a/src/ecco/attribution.py b/src/ecco/attribution.py index e62898f..7bbc3b9 100644 --- a/src/ecco/attribution.py +++ b/src/ecco/attribution.py @@ -18,7 +18,7 @@ from torch.nn import functional as F import transformers -# IG_N_STEPS=50 +IG_N_STEPS=50 ATTR_NAME_ALIASES = { 'ig': 'integrated_gradients', @@ -102,7 +102,7 @@ def normalize_attributes(attributes: torch.Tensor) -> torch.Tensor: ) # print("now running attribution in Capsum") - ig = attr_method_class(forward_func=forward_func) + ig = attr_method_class(forward_func) # print("ig is", ig) # time_start = time() # attributions = ig.attribute(inputs, target=prediction_id, n_steps=IG_N_STEPS) diff --git a/src/ecco/output.py b/src/ecco/output.py index b42b9ad..147b6af 100644 --- a/src/ecco/output.py +++ b/src/ecco/output.py @@ -147,8 +147,8 @@ def explorable(self, printJson: Optional[bool] = False): }})""" d.display(d.Javascript(js)) - if printJson: - print(data) + # if printJson: + # print(data) def __call__(self, position=None, **kwargs): @@ -323,9 +323,13 @@ def primary_attributions(self, }})""" d.display(d.Javascript(js)) + # save the js + path = '/u/haob2/saliency4alce/results/viz.js' + with open(path, 'w') as f: + f.write(js) if 'printJson' in kwargs and kwargs['printJson']: - print(data) + # print(data) return data def _repr_html_(self, **kwargs): @@ -428,7 +432,7 @@ def layer_predictions(self, position: int = 1, topk: Optional[int] = 10, layer: d.display(d.Javascript(js)) if 'printJson' in kwargs and kwargs['printJson']: - print(data) + # print(data) return data def rankings(self, **kwargs): @@ -497,7 +501,7 @@ def rankings(self, **kwargs): 'predicted_tokens': predicted_tokens, 'token_found_mask': token_found_mask } - print(data) + # print(data) return data def rankings_watch(self, watch: List[int] = None, position: int = -1, **kwargs): @@ -565,7 +569,7 @@ def rankings_watch(self, watch: List[int] = None, position: int = -1, **kwargs): data = {'input_tokens': input_tokens, 'output_tokens': output_tokens, 'rankings': rankings} - print(data) + # print(data) return data def attention(self, attention_values=None, layer=0, **kwargs): @@ -616,8 +620,8 @@ def attention(self, attention_values=None, layer=0, **kwargs): }})""".format(data) d.display(d.Javascript(js)) - if 'printJson' in kwargs and kwargs['printJson']: - print(data) + # if 'printJson' in kwargs and kwargs['printJson']: + # print(data) def run_nmf(self, **kwargs): """ @@ -828,7 +832,7 @@ def explore(self, input_sequence: int = 0, **kwargs): d.display(d.Javascript(js)) if 'printJson' in kwargs and kwargs['printJson']: - print(data) + # print(data) return data @@ -837,7 +841,7 @@ def plot(self, n_components=3): for idx, comp in enumerate(self.components): # print('Layer {} components'.format(idx), 'Variance: {}'.format(lm.variances[idx][:n_components])) - print('Layer {} components'.format(idx)) + # print('Layer {} components'.format(idx)) comp = comp[:n_components, :].T # plt.figure(figsize=(16,2)) From e4483d6a56e9b653b8ad43f4bff27763a22ffd7e Mon Sep 17 00:00:00 2001 From: HAO BAI Date: Thu, 31 Aug 2023 17:25:47 -0500 Subject: [PATCH 7/8] full decoder-based support release --- src/ecco/__init__.py | 11 +++++- src/ecco/attribution.py | 77 +++++++++++++++++++++++++++++++++++------ src/ecco/lm.py | 15 ++++---- 3 files changed, 85 insertions(+), 18 deletions(-) diff --git a/src/ecco/__init__.py b/src/ecco/__init__.py index cde3e4d..7f54675 100644 --- a/src/ecco/__init__.py +++ b/src/ecco/__init__.py @@ -13,8 +13,10 @@ __version__ = '0.1.2' +transformer_deprecated_version = '4.22.1' from ecco.lm import LM from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModel, AutoModelForSeq2SeqLM +import transformers from typing import Any, Dict, Optional, List from ecco.util import load_config, pack_tokenizer_config @@ -74,7 +76,10 @@ def from_pretrained(hf_model_id: str, else: config = load_config(hf_model_id) + # if transformers.__version__ != transformer_deprecated_version: tokenizer = AutoTokenizer.from_pretrained(hf_model_id, torch_dtype=torch_dtype) + # else: + # tokenizer = AutoTokenizer.from_pretrained(hf_model_id) if config['type'] == 'enc-dec': model_cls = AutoModelForSeq2SeqLM @@ -82,8 +87,12 @@ def from_pretrained(hf_model_id: str, model_cls = AutoModelForCausalLM else: model_cls = AutoModel - + + print("transformer version:", transformers.__version__) + # if transformers.__version__ != transformer_deprecated_version: model = model_cls.from_pretrained(hf_model_id, output_hidden_states=hidden_states, output_attentions=attention, device_map="auto" if multi_gpu else None, cache_dir=cache_dir, torch_dtype=torch_dtype) + # else: + # model = model_cls.from_pretrained(hf_model_id, output_hidden_states=hidden_states, output_attentions=attention, cache_dir=cache_dir) lm_kwargs = { 'model_name': hf_model_id, diff --git a/src/ecco/attribution.py b/src/ecco/attribution.py index 7bbc3b9..fcd5ee4 100644 --- a/src/ecco/attribution.py +++ b/src/ecco/attribution.py @@ -11,7 +11,12 @@ GuidedBackprop, GuidedGradCam, Deconvolution, - LRP + LRP, + Lime, + LimeBase, + KernelShap, + GradientShap, + Occlusion, ) import numpy as np import numpy.linalg as la @@ -28,7 +33,12 @@ 'gb': 'guided_backprop', 'gg': 'guided_gradcam', 'deconv': 'deconvolution', - 'lrp': 'layer_relevance_propagation' + 'lrp': 'layer_relevance_propagation', + 'lime': 'lime', + 'limebase': 'limebase', + 'shap': 'shap', + 'gshap': 'gshap', + 'occlusion': 'occlusion' } ATTR_NAME_TO_CLASS = { # TODO: Add more Captum Primary attributions with needed computed arguments @@ -40,12 +50,18 @@ 'guided_backprop': GuidedBackprop, 'guided_gradcam': GuidedGradCam, 'deconvolution': Deconvolution, - 'layer_relevance_propagation': LRP + 'layer_relevance_propagation': LRP, + 'lime': Lime, + 'limebase': LimeBase, + 'shap': KernelShap, + 'gshap': GradientShap, + 'occlusion': Occlusion } def compute_primary_attributions_scores(attr_method : str, model: transformers.PreTrainedModel, forward_kwargs: Dict[str, Any], prediction_id: torch.Tensor, + supertoken_range: [], aggregation: str = "L2") -> torch.Tensor: """ Computes the primary attributions with respect to the specified `prediction_id`. @@ -87,9 +103,11 @@ def normalize_attributes(attributes: torch.Tensor) -> torch.Tensor: input_ = forward_kwargs.get('inputs_embeds') decoder_ = forward_kwargs.get('decoder_inputs_embeds') + # for dec-only models if decoder_ is None: forward_func = partial(model_forward, decoder_=decoder_, model=model, extra_forward_args=extra_forward_args) inputs = input_ + # for enc-dec models else: forward_func = partial(model_forward, model=model, extra_forward_args=extra_forward_args) inputs = tuple([input_, decoder_]) @@ -101,14 +119,51 @@ def normalize_attributes(attributes: torch.Tensor) -> torch.Tensor: f"Please choose one of the methods: {list(ATTR_NAME_TO_CLASS.keys())}" ) - # print("now running attribution in Capsum") - ig = attr_method_class(forward_func) - # print("ig is", ig) - # time_start = time() - # attributions = ig.attribute(inputs, target=prediction_id, n_steps=IG_N_STEPS) - attributions = ig.attribute(inputs, target=prediction_id) - # print("attributions shape", attributions.shape) - # print("attribution " + attr_method + " takes time:", time() - time_start) + # ig = attr_method_class(forward_func=forward_func, multiply_by_inputs=True) # for [saliency, ig] + ig = attr_method_class(forward_func=forward_func) # for [lime, shap] + + # print("inputs shape is", inputs.shape) + # attributions = ig.attribute(inputs, target=prediction_id, n_steps=IG_N_STEPS) # for [ig] + # attributions = ig.attribute(inputs, target=prediction_id) # for [saliency, lime, shap] + + # feature_mask should be of size torch.Size([1, 216, 768]), with all the same number in each row + # like this: [[[0, 0, 0, ..., 0, 0, 0], [1, 1, 1, ..., 1, 1, 1], ..., [215, 215, 215, ..., 215, 215, 215]]] + feature_mask = torch.zeros(inputs.shape, dtype=torch.long) + for i in range(inputs.shape[1]): + feature_mask[0][i] = i + feature_mask = feature_mask.to(inputs.device) + + # feature_mask should be of size torch.Size([1, 216, 768]), with all the same numbe for each citation range + # feature_mask = torch.zeros(inputs.shape, dtype=torch.long) + # num_citations = len(supertoken_range) + # j = 0 + # for i in range(inputs.shape[1]): + # # a trick here, don't be puzzled lol, j-1 initially gives -1 which is consistent + # # draw on a piece of paper how this algorithm works + # if j < num_citations: + # if i > supertoken_range[j-1] and i < supertoken_range[j]: + # feature_mask[0][i] = j + # elif i == supertoken_range[j] and j < num_citations - 1: + # j += 1 + # feature_mask[0][i] = j + # else: + # feature_mask[0][i] = 0 + # else: + # feature_mask[0][i] = 0 + # feature_mask = feature_mask.to(inputs.device) + print("feature_mask shape is", feature_mask.shape) + print("feature_mask is", feature_mask) + feature_mask_idxs = [0, 27, 203, 424, 572, 743, 919] + for feature_mask_idx in feature_mask_idxs: + print("feature_mask[0][{}] is".format(feature_mask_idx), feature_mask[0][feature_mask_idx]) + + attributions = ig.attribute( + inputs, # add batch dimension for Captum + target=prediction_id, + feature_mask=feature_mask, + n_samples=300, + show_progress=True + ) # for [limebase] if decoder_ is not None: # Does it make sense to concatenate encoder and decoder attributions before normalization? diff --git a/src/ecco/lm.py b/src/ecco/lm.py index a19adf0..109d0e7 100644 --- a/src/ecco/lm.py +++ b/src/ecco/lm.py @@ -89,7 +89,7 @@ def __init__(self, self.model_type = self.model_config['type'] embeddings_layer_name = self.model_config['embedding'] embed_retriever = attrgetter(embeddings_layer_name) - # print(self.model) + print(self.model) if type(embed_retriever(self.model)) == torch.nn.Embedding: self.model_embeddings = embed_retriever(self.model).weight else: @@ -127,6 +127,7 @@ def _analyze_token(self, encoder_attention_mask: Optional, # TODO: use encoder mask and also decoder mask decoder_input_embeds: Optional[torch.Tensor], prediction_id: torch.Tensor, + supertoken_range: Optional[List[int]] = None, attribution_flags: Optional[List[str]] = []) -> None: """ Analyzes a predicted token. @@ -135,7 +136,7 @@ def _analyze_token(self, for attr_method in attribution_flags: # deactivate hooks: attr method can perform multiple forward steps - # self._remove_hooks() + self._remove_hooks() # Add attribution scores to self.attributionsp # print which device the model is on @@ -148,7 +149,8 @@ def _analyze_token(self, 'inputs_embeds': encoder_input_embeds, 'decoder_inputs_embeds': decoder_input_embeds }, - prediction_id=prediction_id + prediction_id=prediction_id, + supertoken_range=supertoken_range ).cpu().detach().numpy() ) @@ -161,6 +163,7 @@ def generate(self, input_str: str, attribution: Optional[List[str]] = [], generate: Optional[int] = None, beam_size: int = 1, + supertoken_range: Optional[List[int]] = None, **generate_kwargs: Any): """ Generate tokens in response to an input prompt. @@ -222,7 +225,7 @@ def generate(self, input_str: str, viz_id = self.display_input_sequence(input_ids[0]) # Get model output - # self._remove_hooks() # deactivate hooks: we will run them for the last model forward only + self._remove_hooks() # deactivate hooks: we will run them for the last model forward only # print the device of input_ids, attention_mask, and self.model # print(f"input_ids.device: {input_ids.device}") # print(f"attention_mask.device: {attention_mask.device}") @@ -297,10 +300,10 @@ def generate(self, input_str: str, encoder_attention_mask=attention_mask, decoder_input_embeds=decoder_input_embeds, attribution_flags=attribution, - prediction_id=prediction_id + prediction_id=prediction_id, + supertoken_range=supertoken_range ) - # Recomputing inputs ids, attention mask and decoder input ids if decoder_input_ids is not None: assert len(decoder_input_ids.size()) == 2 # will break otherwise From cfa437e18c0b6f5091d5049fc8a2b3ce09f11beb Mon Sep 17 00:00:00 2001 From: HAO BAI Date: Thu, 31 Aug 2023 23:00:36 -0500 Subject: [PATCH 8/8] token evolution functionality implemented --- src/ecco/attribution.py | 10 +++++----- src/ecco/lm.py | 6 ++++++ 2 files changed, 11 insertions(+), 5 deletions(-) diff --git a/src/ecco/attribution.py b/src/ecco/attribution.py index fcd5ee4..fe0b325 100644 --- a/src/ecco/attribution.py +++ b/src/ecco/attribution.py @@ -151,17 +151,17 @@ def normalize_attributes(attributes: torch.Tensor) -> torch.Tensor: # else: # feature_mask[0][i] = 0 # feature_mask = feature_mask.to(inputs.device) - print("feature_mask shape is", feature_mask.shape) - print("feature_mask is", feature_mask) + # print("feature_mask shape is", feature_mask.shape) + # print("feature_mask is", feature_mask) feature_mask_idxs = [0, 27, 203, 424, 572, 743, 919] - for feature_mask_idx in feature_mask_idxs: - print("feature_mask[0][{}] is".format(feature_mask_idx), feature_mask[0][feature_mask_idx]) + # for feature_mask_idx in feature_mask_idxs: + # print("feature_mask[0][{}] is".format(feature_mask_idx), feature_mask[0][feature_mask_idx]) attributions = ig.attribute( inputs, # add batch dimension for Captum target=prediction_id, feature_mask=feature_mask, - n_samples=300, + n_samples=5, show_progress=True ) # for [limebase] diff --git a/src/ecco/lm.py b/src/ecco/lm.py index 109d0e7..20fa4e3 100644 --- a/src/ecco/lm.py +++ b/src/ecco/lm.py @@ -245,8 +245,10 @@ def generate(self, input_str: str, temperature=temperature, return_dict_in_generate=True, output_scores=True, + output_hidden_states=True, **generate_kwargs ) + # print("output hidden states:", output.hidden_states) time_end = time() # print("self.model.generate takes time: ", time_end - time_start) gen_time = time_end - time_start @@ -402,6 +404,8 @@ def generate(self, input_str: str, "Not expected to have encoder_hidden_states/decoder_hidden_states with 'hidden_states'" setattr(output, "decoder_hidden_states", output.hidden_states) + # print("output.decoder_hidden_states:", output.decoder_hidden_states) + encoder_hidden_states = getattr(output, "encoder_hidden_states", None) decoder_hidden_states = getattr(output, "hidden_states", getattr(output, "decoder_hidden_states", None)) @@ -425,6 +429,8 @@ def generate(self, input_str: str, attributions = self.attributions attn = getattr(output, "attentions", None) + + # print("decoder hidden states:", decoder_hidden_states) return OutputSeq(**{'tokenizer': self.tokenizer, 'token_ids': all_token_ids.unsqueeze(0), # Add a batch dimension