forked from computational-imaging/opticalCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_classification.py
executable file
·260 lines (208 loc) · 9.2 KB
/
model_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import os
import tensorflow as tf
import abc
class ClassificationModel(abc.ABC):
"""Generic tensorflow classification model class.
"""
def __init__(self, name, ckpt_path=None):
sess_config = tf.ConfigProto(allow_soft_placement=True)
self.sess = tf.Session(config=sess_config)
self.name = name
self.ckpt_path = ckpt_path
@abc.abstractmethod
def _build_graph(self, x_train, **kwargs):
"""Builds the model, given x_train as input.
Args:
x_train: The dequeued training example
**kwargs: Model parameters that can later be passed to the "fit" function
Returns:
model_output: The output of the model
"""
@abc.abstractmethod
def _get_data_loss(self,
model_output,
ground_truth):
"""Computes the data loss (not regularization loss) of the model.
!!For consistency of weighing of regularization loss vs. data loss,
normalize loss by batch size!!
Args:
model_output: Output of self._build_graph
ground_truth: respective ground truth
Returns:
data_loss: Scalar data loss of the model. """
def _get_reg_loss(self):
reg_loss = tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
return reg_loss
def infer(self, model_inputs, model_params={}, get_loss=False, gt=None):
"""Does inference at test time.
"""
x_test, y_test = self._get_inference_queue()
# Set up the training graph
with tf.variable_scope('model'):
model_output_graph = self._build_graph(x_test, **model_params)
if get_loss:
data_loss_graph, accuracy = self._get_data_loss(model_output_graph, y_test)
# Create a saver
self.saver = tf.train.Saver(max_to_keep=3)
if self.ckpt_path is not None:
self.saver.restore(self.sess,self.ckpt_path)
else:
print("Warning: No checkpoint path given. Inference happens with random weights")
# Init op
init = tf.global_variables_initializer()
self.sess.run(init)
print("Starting Queues")
coord = tf.train.Coordinator()
enqueue_threads = tf.train.start_queue_runners(coord=coord, sess=self.sess)
model_outputs = []
try:
while True:
model_output= self.sess.run(model_output_grpah)
model_outputs.append(model_output)
if coord.should_stop():
break
except Exception as e:
print("Interrupted due to exception")
print(e)
coord.request_stop()
finally:
coord.request_stop()
coord.join(enqueue_threads)
return model_outputs
@abc.abstractmethod
def _get_training_queue(self, batch_size):
"""Builds the queues for training data.
Use tensorflow's readers, decoders and tf.train.batch to build the dataset.
Args:
batch_size:
Returns:
x_train: the dequeued model input
y_train: the dequeued ground truth
Sketch of minimum example:
def _get_training_queue(self, batch_size):
file_list = tf.matching_files('./test_imgs/*.png')
filename_queue = tf.train.string_input_producer(file_list)
image_reader = tf.WholeFileReader()
_, image_file = image_reader.read(filename_queue)
image = tf.image.decode_png(image_file,
channels=1,
dtype=tf.uint8)
image = tf.cast(image, tf.float32)
image /= 255.0
image_batch = tf.train.batch(image,
shapes=[512,512,1],
batch_size=batch_size)
return image_batch
"""
def _get_validation_queue(self):
"""
Returns:
"""
def fit(self,
model_params, # Dictionary of model parameters
opt_type, # Type of optimization algorithm
opt_params, # Parameters of optimization algorithm
batch_size,
starter_learning_rate,
logdir,
num_steps,
num_steps_until_save,
num_steps_until_summary,
decay_type=None, # Type of decay
decay_params=None, # Decay parameters
):
"""Trains the model.
"""
x_train, y_train = self._get_training_queue(batch_size)
# x_test, y_test = self._get_validation_queue()
print("\n\n")
print(40*"*")
print("Saving model and summaries to %s"%logdir)
print("Optimization parameters:")
print(opt_type)
print(opt_params)
print("Starter learning rate is %f"%starter_learning_rate)
print(40*"*")
print("\n\n")
# Set up the training graph
with tf.variable_scope('model'):
model_output_train = self._build_graph(x_train, **model_params)
data_loss_graph, accuracy_graph = self._get_data_loss(model_output_train, y_train)
reg_loss_graph = self._get_reg_loss()
total_loss_graph = tf.add(reg_loss_graph,
data_loss_graph)
if decay_type is not None:
global_step = tf.Variable(0, trainable=False)
if decay_type == 'exponential':
learning_rate = tf.train.exponential_decay(starter_learning_rate,
global_step,
**decay_params)
elif decay_type == 'polynomial':
learning_rate = tf.train.polynomial_decay(starter_learning_rate,
global_step,
**decay_params)
else:
learning_rate = starter_learning_rate
if opt_type == 'ADAM':
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate,
**opt_params)
print("ADAM")
elif opt_type == 'sgd_with_momentum':
optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate,
**opt_params)
print("SGD")
elif opt_type == 'adadelta':
optimizer = tf.train.AdadeltaOptimizer(learning_rate=learning_rate, rho=.9)
#**opt_params)
print("Adadelta")
if decay_type is not None:
train_step = optimizer.minimize(total_loss_graph, global_step=global_step)
else:
train_step = optimizer.minimize(total_loss_graph)
# Attach summaries to some of the training parameters
tf.summary.scalar('data_loss', data_loss_graph)
tf.summary.scalar('reg_loss', reg_loss_graph)
tf.summary.scalar('total_loss', total_loss_graph)
tf.summary.scalar('learning_rate', learning_rate)
# Create a saver
self.saver = tf.train.Saver(keep_checkpoint_every_n_hours=2,
max_to_keep=3)
# Get all summaries
summaries_merged = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter(logdir, self.sess.graph, flush_secs=60)
if self.ckpt_path is not None:
self.saver.restore(self.sess,self.ckpt_path)
# Init op
init = tf.global_variables_initializer()
self.sess.run(init)
# Train the model
print("Starting Queues")
coord = tf.train.Coordinator()
enqueue_threads = tf.train.start_queue_runners(coord=coord, sess=self.sess)
print("Beginning the training")
try:
for step in range(num_steps):
_, total_loss, reg_loss, data_loss, acc = self.sess.run([train_step,
total_loss_graph, reg_loss_graph,
data_loss_graph, accuracy_graph])
if not step % 25:
print("Step %d: total_loss %0.6f, reg_loss %0.6f, data_loss %0.6f, acc %0.2f\n"%\
(step, total_loss, reg_loss, data_loss, acc))
if coord.should_stop():
break
if not step % num_steps_until_save and step:
print("Saving model...")
save_path = os.path.join(logdir, self.name+'.ckpt')
self.saver.save(self.sess, save_path, global_step=step)
if not step % num_steps_until_summary:
print("Writing summaries...")
summary = self.sess.run(summaries_merged)
summary_writer.add_summary(summary, step)
except Exception as e:
print("Training interrupted due to exception")
print(e)
coord.request_stop()
finally:
coord.request_stop()
coord.join(enqueue_threads)
return data_loss