forked from computational-imaging/opticalCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathonn_quickdraw-16-tiled.py
executable file
·242 lines (195 loc) · 9.2 KB
/
onn_quickdraw-16-tiled.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import numpy as np
import math
import timeit
import matplotlib.pyplot as plt
import functools
from datetime import datetime
import argparse
import sys
import os
os.environ["CUDA_VISIBLE_DEVICES"]="3"
import tensorflow as tf
import layers.optics as optics
import layers.optics_alt as optics_alt
from layers.utils import *
# test a model with various constraints
def train(params, summary_every=100, print_every=250, save_every=1000, verbose=True):
# Unpack params
wavelength = params.get('wavelength', 532e-9)
isNonNeg = params.get('isNonNeg', False)
numIters = params.get('numIters', 1000)
activation = params.get('activation', tf.nn.relu)
opt_type = params.get('opt_type', 'ADAM')
# switches
doMultichannelConv = params.get('doMultichannelConv', False)
doMean = params.get('doMean', False)
doOpticalConv = params.get('doOpticalConv', True)
doAmplitudeMask = params.get('doAmplitudeMask', False)
doZernike = params.get('doZernike', False)
doNonnegReg = params.get('doNonnegReg', False)
z_modes = params.get('z_modes', 1024)
convdim1 = params.get('convdim1', 100)
classes = 16
cdim1 = params.get('cdim1', classes)
padamt = params.get('padamt', 0)
dim = params.get('dim', 60)
tiling_factor = params.get('tiling_factor', 5)
tile_size = params.get('tile_size', 56)
kernel_size = params.get('kernel_size', 7)
# constraint helpers
def nonneg(input_tensor):
return tf.square(input_tensor) if isNonNeg else input_tensor
sess = tf.InteractiveSession(config=tf.ConfigProto(allow_soft_placement=True))
# input placeholders
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.int64, shape=[None, classes])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(x, [-1, 28, 28, 1])
paddings = tf.constant([[0, 0,], [padamt, padamt], [padamt, padamt], [0, 0]])
x_image = tf.pad(x_image, paddings)
# x_image = tf.image.resize_nearest_neighbor(x_image, size=(dim, dim))
tf.summary.image('input', x_image, 3)
# if not isNonNeg and not doNonnegReg:
# x_image -= tf.reduce_mean(x_image)
# nonneg regularizer
global_step = tf.Variable(0, trainable=False)
if doNonnegReg:
reg_scale = tf.train.polynomial_decay(0.,
global_step,
decay_steps=8000,
end_learning_rate=10000.)
psf_reg = optics_alt.nonneg_regularizer(reg_scale)
else:
psf_reg = None
# build model
# single tiled convolutional layer
h_conv1 = optics_alt.tiled_conv_layer(x_image, tiling_factor, tile_size, kernel_size,
name='h_conv1', nonneg=isNonNeg, regularizer=psf_reg)
optics.attach_img("h_conv1", h_conv1)
split_1d = tf.split(h_conv1, num_or_size_splits=4, axis=1)
# calculating output scores
h_conv_split = tf.concat([tf.split(split_1d[0], num_or_size_splits=4, axis=2),
tf.split(split_1d[1], num_or_size_splits=4, axis=2),
tf.split(split_1d[2], num_or_size_splits=4, axis=2),
tf.split(split_1d[3], num_or_size_splits=4, axis=2)], 0)
if doMean:
y_out = tf.transpose(tf.reduce_mean(h_conv_split, axis=[2,3,4]))
else:
y_out = tf.transpose(tf.reduce_max(h_conv_split, axis=[2,3,4]))
tf.summary.image('output', tf.reshape(y_out, [-1, 4, 4, 1]), 3)
# loss, train, acc
with tf.name_scope('cross_entropy'):
total_data_loss = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_out)
data_loss = tf.reduce_mean(total_data_loss)
reg_loss = tf.reduce_sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
total_loss = tf.add(data_loss, reg_loss)
tf.summary.scalar('data_loss', data_loss)
tf.summary.scalar('reg_loss', reg_loss)
tf.summary.scalar('total_loss', total_loss)
if opt_type == 'ADAM':
train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(total_loss, global_step)
elif opt_type == 'Adadelta':
train_step = tf.train.AdadeltaOptimizer(FLAGS.learning_rate_ad, rho=.9).minimize(total_loss, global_step)
else:
train_step = tf.train.MomentumOptimizer(FLAGS.learning_rate, momentum=0.5, use_nesterov=True).minimize(total_loss, global_step)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y_out, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('accuracy', accuracy)
losses = []
# tensorboard setup
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
tf.global_variables_initializer().run()
# add ops to save and restore all the variables
saver = tf.train.Saver(max_to_keep=2)
save_path = os.path.join(FLAGS.log_dir, 'model.ckpt')
# change to your directory
train_data = np.load('/media/data/Datasets/quickdraw/split/quickdraw16_train.npy')
test_data = np.load('/media/data/Datasets/quickdraw/split/quickdraw16_test.npy')
def get_feed(train, batch_size=50):
if train:
idcs = np.random.randint(0, np.shape(train_data)[0], batch_size)
x = train_data[idcs, :]
y = np.zeros((batch_size, classes))
y[np.arange(batch_size), idcs//8000] = 1
else:
x = test_data
y = np.zeros((np.shape(test_data)[0], classes))
y[np.arange(np.shape(test_data)[0]), np.arange(np.shape(test_data)[0])//100] = 1
return x, y
x_test, y_test = get_feed(train=False)
for i in range(FLAGS.num_iters):
x_train, y_train = get_feed(train=True)
_, loss, reg_loss_graph, train_accuracy, train_summary = sess.run(
[train_step, total_loss, reg_loss, accuracy, merged],
feed_dict={x: x_train, y_: y_train, keep_prob: FLAGS.dropout})
losses.append(loss)
if i % summary_every == 0:
train_writer.add_summary(train_summary, i)
if i > 0 and i % save_every == 0:
# print("Saving model...")
saver.save(sess, save_path, global_step=i)
# test_summary, test_accuracy = sess.run([merged, accuracy],
# feed_dict={x: x_test, y_: y_test, keep_prob: 1.0})
# test_writer.add_summary(test_summary, i)
# if verbose:
# print('step %d: test acc %g' % (i, test_accuracy))
if i % print_every == 0:
if verbose:
print('step %d:\t loss %g,\t reg_loss %g,\t train acc %g' %
(i, loss, reg_loss_graph, train_accuracy))
test_batches = []
for i in range(32):
idx = i*50
batch_acc = accuracy.eval(feed_dict={x: x_test[idx:idx+50, :], y_: y_test[idx:idx+50, :], keep_prob: 1.0})
test_batches.append(batch_acc)
test_acc = np.mean(test_batches)
#test_acc = accuracy.eval(feed_dict={x: x_test, y_: y_test, keep_prob: 1.0})
print('final step %d, train accuracy %g, test accuracy %g' %
(i, train_accuracy, test_acc))
#sess.close()
train_writer.close()
test_writer.close()
def main(_):
if tf.gfile.Exists(FLAGS.log_dir):
tf.gfile.DeleteRecursively(FLAGS.log_dir)
tf.gfile.MakeDirs(FLAGS.log_dir)
# try different constraints
params = {}
params['wavelength'] = 532e-9
params['isNonNeg'] = True
params['activation'] = tf.identity # functools.partial(shifted_relu, thresh=10.0)
params['opt_type'] = 'ADAM'
params['doMultichannelConv'] = False
params['doMean'] = False
params['doOpticalConv'] = False
params['doNonnegReg'] = False
params['padamt'] = 64
params['dim'] = 40*4
params['tiling_factor'] = 4
params['tile_size'] = 40
params['kernel_size'] = 32
train(params, summary_every=10, print_every=10, save_every=1000, verbose=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--num_iters', type=int, default=10001,
help='Number of steps to run trainer.')
parser.add_argument('--learning_rate', type=float, default=0.0005,
help='Initial learning rate')
parser.add_argument('--learning_rate_ad', type=float, default=1,
help='Initial learning rate')
parser.add_argument('--dropout', type=float, default=0.9,
help='Keep probability for training dropout.')
now = datetime.now()
runtime = now.strftime('%Y%m%d-%H%M%S')
run_id = 'quickdraw_tiled_nonneg/' + runtime + '/'
parser.add_argument(
'--log_dir',
type=str,
default=os.path.join('checkpoints/', run_id),
help='Summaries log directory')
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)