-
Notifications
You must be signed in to change notification settings - Fork 45
/
Copy pathlsh.go
279 lines (251 loc) · 9.55 KB
/
lsh.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
package nlp
import (
"fmt"
"strings"
radix "github.com/armon/go-radix"
"github.com/james-bowman/sparse"
)
// lshTableBucket represents a hash table bucket used for ClassicLSH. The bucket
// is a slice of IDs relating to items whose hash maps to the bucket.
type lshTableBucket []interface{}
// lshTable is an hash table used for ClassicLSH. It is simply a map of hashcodes
// to lshTableBuckets
//type lshTable map[uint64]lshTableBucket
type lshTable map[uint64]lshTableBucket
// remove removes the specified item from the LSH table
func (t lshTable) remove(id interface{}) {
for key, bucketContents := range t {
for j, indexedID := range bucketContents {
if id == indexedID {
bucketContents[j] = bucketContents[len(bucketContents)-1]
t[key] = bucketContents[:len(bucketContents)-1]
if len(t[key]) == 0 {
delete(t, key)
}
return
}
}
}
}
// ClassicLSH supports finding top-k Approximate Nearest Neighbours (ANN) using Locality
// Sensitive Hashing (LSH). Classic LSH scheme is based on using hash tables to store
// items by their locality sensitive hash code based on the work of A. Gionis et al.
// Items that map to the same bucket (their hash codes collide) are similar. Multiple
// hash tables are used to improve recall where some similar items would otherwise
// hash to separate, neighbouring buckets in only a single table.
//
// A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High Dimensions via
// Hashing,” VLDB ’99 Proc. 25th Int. Conf. Very Large Data Bases, vol. 99, no. 1,
// pp. 518–529, 1999.
// http://www.cs.princeton.edu/courses/archive/spring13/cos598C/Gionis.pdf%5Cnhttp://portal.acm.org/citation.cfm?id=671516
type ClassicLSH struct {
numHashtables int
numHashfunctions int
reqLen int
hashTables []lshTable
}
// NewClassicLSH creates a new ClassicLSH with the configured number of hash tables
// and hash functions per table. The length of hash signatures used in this type's
// methods (Put() and GetCandidates()) should be exactly equal to functions * tables.
// The Classic LSH algorithm uses multiple hash tables to improve recall for similar
// items that hash to nearby buckets within a specific hash table.
func NewClassicLSH(functions, tables int) *ClassicLSH {
hashtables := make([]lshTable, tables)
for i := range hashtables {
hashtables[i] = make(map[uint64]lshTableBucket)
}
return &ClassicLSH{
reqLen: tables * functions,
numHashtables: tables,
numHashfunctions: functions,
hashTables: hashtables,
}
}
// Put stores the specified LSH signature and associated ID in the LSH index.
// The method panics if the signature is not the same length as tables * functions.
func (l *ClassicLSH) Put(id interface{}, signature *sparse.BinaryVec) {
keys := l.hashKeysForSignature(signature)
for i := range l.hashTables {
l.hashTables[i][keys[i]] = append(l.hashTables[i][keys[i]], id)
}
}
// GetCandidates returns the IDs of candidate nearest neighbours. It is up to
// the calling code to further filter these candidates based on distance to arrive
// at the top-k approximate nearest neighbours. The number of candidates returned
// may be smaller or larger than k. The method panics if the signature is not the
// same length as tables * functions.
func (l *ClassicLSH) GetCandidates(query *sparse.BinaryVec, k int) []interface{} {
keys := l.hashKeysForSignature(query)
seen := make(map[interface{}]struct{})
for i, table := range l.hashTables {
if bucketEntries, exist := table[keys[i]]; exist {
for _, id := range bucketEntries {
seen[id] = struct{}{}
}
}
}
// Collect results
ids := make([]interface{}, len(seen))
var i int
for index := range seen {
ids[i] = index
i++
}
return ids
}
// Remove removes the specified item from the LSH index
func (l *ClassicLSH) Remove(id interface{}) {
for _, table := range l.hashTables {
table.remove(id)
}
}
// hashKeysForSignature chunks the hash into a number of smaller hash codes (one per
// table) each the length of the configured number of hash functions per table.
// The method panics if the signature is not the same length as tables * functions.
func (l *ClassicLSH) hashKeysForSignature(signature *sparse.BinaryVec) []uint64 {
// TODO: rather than simply chunking up the hash signature into k/l chunks
// possibly select hash functions (digits) uniformly at random (with replacement?)
if signature.Len() != l.reqLen {
panic(fmt.Sprintf("nlp: Specified signature is not the correct length. Needed %d but received %d", l.reqLen, signature.Len()))
}
keys := make([]uint64, l.numHashtables)
for i := range keys {
//keys[i] = signature.SliceToUint64(i*l.numHashfunctions, ((i+1)*l.numHashfunctions)-1)
keys[i] = signature.SliceToUint64(i*l.numHashfunctions, ((i + 1) * l.numHashfunctions))
}
return keys
}
// hashKeysForSignature chunks the hash into a number of smaller hash codes (one per
// table) each the length of the configured number of hash functions per table.
// The method panics if the signature is not the same length as tables * functions.
// func (l *ClassicLSH) hashKeysForSignature(signature *sparse.BinaryVec) []string {
// // TODO: rather than simply chunking up the hash signature into k/l chunks
// // possibly select hash functions (digits) uniformly at random (with replacement?)
// if signature.Len() != l.reqLen {
// panic(fmt.Sprintf("nlp: Specified signature is not the correct length. Needed %d but received %d", l.reqLen, signature.Len()))
// }
// keys := make([]string, l.numHashtables)
// key := signature.String()
// for i := range keys {
// keys[i] = key[i*l.numHashfunctions : (i+1)*l.numHashfunctions]
// }
// return keys
// }
// LSHForest is an implementation of the LSH Forest Locality Sensitive Hashing scheme
// based on the work of M. Bawa et al.
//
// M. Bawa, T. Condie, and P. Ganesan, “LSH forest: self-tuning indexes for
// similarity search,” Proc. 14th Int. Conf. World Wide Web - WWW ’05, p. 651, 2005.
// http://dl.acm.org/citation.cfm?id=1060745.1060840
type LSHForest struct {
trees []*radix.Tree
numHashfunctions int
reqLen int
}
// NewLSHForest creates a new LSHForest Locality Sensitive Hashing scheme with the
// specified number of hash tables and hash functions per table.
func NewLSHForest(functions int, tables int) *LSHForest {
trees := make([]*radix.Tree, tables)
for i := range trees {
trees[i] = radix.New()
}
return &LSHForest{
trees: trees,
numHashfunctions: functions,
reqLen: functions * tables,
}
}
// Put stores the specified LSH signature and associated ID in the LSH index
func (l *LSHForest) Put(id interface{}, signature *sparse.BinaryVec) {
keys := l.hashKeysForSignature(signature)
for i, tree := range l.trees {
//bucket, _ := tree.Get(keys[i])
bucket, ok := tree.Get(keys[i])
if !ok {
bucket = make([]interface{}, 0)
}
tree.Insert(keys[i], append(bucket.([]interface{}), id))
}
}
// GetCandidates returns the IDs of candidate nearest neighbours. It is up to
// the calling code to further filter these candidates based on distance to arrive
// at the top-k approximate nearest neighbours. The number of candidates returned
// may be smaller or larger than k.
func (l *LSHForest) GetCandidates(query *sparse.BinaryVec, k int) []interface{} {
keys := l.hashKeysForSignature(query)
m := k
seen := make(map[interface{}]struct{})
for i, tree := range l.trees {
if bucketEntries, exist := tree.Get(keys[i]); exist {
for _, id := range bucketEntries.([]interface{}) {
seen[id] = struct{}{}
}
}
}
// if we have not found enough candidates then walk back up the trees for
// similar items in neighbouring buckets with shared prefixes
x := l.numHashfunctions
for len(seen) < m && x > 0 {
for i, tree := range l.trees {
var k string
if keys[i][x-1] == '1' {
k = "0"
} else {
k = "1"
}
altKey := strings.Join([]string{keys[i][0 : x-1], k}, "")
tree.WalkPrefix(altKey, func(s string, v interface{}) bool {
for _, id := range v.([]interface{}) {
seen[id] = struct{}{}
}
return false
})
}
x--
}
// Collect results
candidates := make([]interface{}, len(seen))
var i int
for index := range seen {
candidates[i] = index
i++
}
return candidates
}
// Remove removes the specified item from the LSH index
func (l *LSHForest) Remove(id interface{}) {
for _, tree := range l.trees {
tree.Walk(func(s string, v interface{}) bool {
bucketContents := v.([]interface{})
for i, indexedID := range bucketContents {
if id == indexedID {
bucketContents[i] = bucketContents[len(bucketContents)-1]
bucketContents = bucketContents[:len(bucketContents)-1]
if len(bucketContents) == 0 {
tree.Delete(s)
} else {
tree.Insert(s, bucketContents)
}
return true
}
}
return false
})
}
}
// hashKeysForSignature chunks the hash into a number of smaller hash codes (one per
// table) each the length of the configured number of hash functions per table.
// The method panics if the signature is not the same length as tables * functions.
func (l *LSHForest) hashKeysForSignature(signature *sparse.BinaryVec) []string {
// TODO: rather than simply chunking up the hash signature into k/l chunks
// possibly select hash functions (digits) uniformly at random (with replacement?)
if signature.Len() != l.reqLen {
panic(fmt.Sprintf("nlp: Specified signature is not the correct length. Needed %d but received %d", l.reqLen, signature.Len()))
}
keys := make([]string, len(l.trees))
key := signature.String()
for i := range keys {
keys[i] = key[i*l.numHashfunctions : (i+1)*l.numHashfunctions]
}
return keys
}