forked from agda/agda-stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPropositional.agda
141 lines (105 loc) · 4.83 KB
/
Propositional.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
------------------------------------------------------------------------
-- The Agda standard library
--
-- An inductive definition for the permutation relation
------------------------------------------------------------------------
{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.Relation.Binary.Permutation.Propositional
{a} {A : Set a} where
open import Data.List.Base using (List; []; _∷_)
open import Data.List.Relation.Binary.Equality.Propositional using (_≋_; ≋⇒≡)
open import Relation.Binary.Core using (Rel; _⇒_)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Binary.Definitions using (Reflexive; Transitive)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_; refl)
import Relation.Binary.Reasoning.Setoid as EqReasoning
open import Relation.Binary.Reasoning.Syntax
import Data.List.Relation.Binary.Permutation.Setoid as Permutation
private
variable
x y z v w : A
ws xs ys zs : List A
------------------------------------------------------------------------
-- An inductive definition of permutation
-- Note that one would expect that this would be defined in terms of
-- `Permutation.Setoid`. This is not currently the case as it involves
-- adding in a bunch of trivial `_≡_` proofs to the constructors which
-- a) adds noise and b) prevents easy access to the variables `x`, `y`.
-- This may be changed in future when a better solution is found.
infix 3 _↭_
data _↭_ : Rel (List A) a where
refl : xs ↭ xs
prep : ∀ x → xs ↭ ys → x ∷ xs ↭ x ∷ ys
swap : ∀ x y → xs ↭ ys → x ∷ y ∷ xs ↭ y ∷ x ∷ ys
trans : xs ↭ ys → ys ↭ zs → xs ↭ zs
-- Constructor aliases
↭-refl : Reflexive _↭_
↭-refl = refl
↭-prep : ∀ x → xs ↭ ys → x ∷ xs ↭ x ∷ ys
↭-prep = prep
↭-swap : ∀ x y → xs ↭ ys → x ∷ y ∷ xs ↭ y ∷ x ∷ ys
↭-swap = swap
------------------------------------------------------------------------
-- _↭_ is an equivalence
↭-reflexive : _≡_ ⇒ _↭_
↭-reflexive refl = ↭-refl
↭-pointwise : _≋_ ⇒ _↭_
↭-pointwise xs≋ys = ↭-reflexive (≋⇒≡ xs≋ys)
↭-sym : xs ↭ ys → ys ↭ xs
↭-sym refl = refl
↭-sym (prep x xs↭ys) = prep x (↭-sym xs↭ys)
↭-sym (swap x y xs↭ys) = swap y x (↭-sym xs↭ys)
↭-sym (trans xs↭ys ys↭zs) = trans (↭-sym ys↭zs) (↭-sym xs↭ys)
-- A smart version of trans that avoids unnecessary `refl`s (see #1113).
↭-trans : Transitive _↭_
↭-trans refl ρ₂ = ρ₂
↭-trans ρ₁ refl = ρ₁
↭-trans ρ₁ ρ₂ = trans ρ₁ ρ₂
↭-isEquivalence : IsEquivalence _↭_
↭-isEquivalence = record
{ refl = ↭-refl
; sym = ↭-sym
; trans = ↭-trans
}
↭-setoid : Setoid _ _
↭-setoid = record
{ isEquivalence = ↭-isEquivalence
}
------------------------------------------------------------------------
-- _↭_ is equivalent to `Setoid`-based permutation
private
open module ↭ₛ = Permutation (≡.setoid A)
using ()
renaming (_↭_ to _↭ₛ_)
↭⇒↭ₛ : xs ↭ ys → xs ↭ₛ ys
↭⇒↭ₛ refl = ↭ₛ.↭-refl
↭⇒↭ₛ (prep x p) = ↭ₛ.↭-prep x (↭⇒↭ₛ p)
↭⇒↭ₛ (swap x y p) = ↭ₛ.↭-swap x y (↭⇒↭ₛ p)
↭⇒↭ₛ (trans p q) = ↭ₛ.↭-trans (↭⇒↭ₛ p) (↭⇒↭ₛ q)
↭ₛ⇒↭ : _↭ₛ_ ⇒ _↭_
↭ₛ⇒↭ (↭ₛ.refl xs≋ys) = ↭-pointwise xs≋ys
↭ₛ⇒↭ (↭ₛ.prep refl p) = ↭-prep _ (↭ₛ⇒↭ p)
↭ₛ⇒↭ (↭ₛ.swap refl refl p) = ↭-swap _ _ (↭ₛ⇒↭ p)
↭ₛ⇒↭ (↭ₛ.trans p q) = ↭-trans (↭ₛ⇒↭ p) (↭ₛ⇒↭ q)
------------------------------------------------------------------------
-- A reasoning API to chain permutation proofs and allow "zooming in"
-- to localised reasoning.
module PermutationReasoning where
private module Base = EqReasoning ↭-setoid
open Base public
hiding (step-≈; step-≈˘; step-≈-⟩; step-≈-⟨)
renaming (≈-go to ↭-go)
open ↭-syntax _IsRelatedTo_ _IsRelatedTo_ ↭-go ↭-sym public
-- Some extra combinators that allow us to skip certain elements
infixr 2 step-swap step-prep
-- Skip reasoning on the first element
step-prep : ∀ x xs {ys zs : List A} → (x ∷ ys) IsRelatedTo zs →
xs ↭ ys → (x ∷ xs) IsRelatedTo zs
step-prep x xs rel xs↭ys = ↭-go (prep x xs↭ys) rel
-- Skip reasoning about the first two elements
step-swap : ∀ x y xs {ys zs : List A} → (y ∷ x ∷ ys) IsRelatedTo zs →
xs ↭ ys → (x ∷ y ∷ xs) IsRelatedTo zs
step-swap x y xs rel xs↭ys = ↭-go (swap x y xs↭ys) rel
syntax step-prep x xs y↭z x↭y = x ∷ xs <⟨ x↭y ⟩ y↭z
syntax step-swap x y xs y↭z x↭y = x ∷ y ∷ xs <<⟨ x↭y ⟩ y↭z