Date: 18 July, 2023
Model: gpt-4
Temperature: 0.2
Passing runs: 10
Total runs: 10
Success rate: 100%
Tokens: 192
from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
The above is an incomplete Python code fragment. Return the complete and correct code with no additional text.
from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""closest_pair = None
distance = None
for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
if distance is None:
distance = abs(elem - elem2)
closest_pair = tuple(sorted([elem, elem2]))
else:
new_distance = abs(elem - elem2)
if new_distance < distance:
distance = new_distance
closest_pair = tuple(sorted([elem, elem2]))
return closest_pair
METADATA = {
'author': 'jt',
'dataset': 'test'
}
def check(candidate):
assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2]) == (3.9, 4.0)
assert candidate([1.0, 2.0, 5.9, 4.0, 5.0]) == (5.0, 5.9)
assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.2]) == (2.0, 2.2)
assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0]) == (2.0, 2.0)
assert candidate([1.1, 2.2, 3.1, 4.1, 5.1]) == (2.2, 3.1)
Start time: 2023-07-18 18:51:13
Duration: 21.83s
Completion tokens: 253
Result: Pass
from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
numbers.sort()
closest = (numbers[0], numbers[1])
min_diff = abs(numbers[1] - numbers[0])
for i in range(1, len(numbers) - 1):
diff = abs(numbers[i+1] - numbers[i])
if diff < min_diff:
min_diff = diff
closest = (numbers[i], numbers[i+1])
return closest
Start time: 2023-07-18 18:50:50
Duration: 22.96s
Completion tokens: 254
Result: Pass
from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
numbers.sort()
closest_pair = (numbers[0], numbers[1])
min_diff = abs(numbers[1] - numbers[0])
for i in range(1, len(numbers) - 1):
diff = abs(numbers[i+1] - numbers[i])
if diff < min_diff:
min_diff = diff
closest_pair = (numbers[i], numbers[i+1])
return closest_pair
Start time: 2023-07-18 18:50:31
Duration: 18.04s
Completion tokens: 240
Result: Pass
from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
numbers.sort()
min_diff = float('inf')
closest_pair = None
for i in range(len(numbers) - 1):
diff = abs(numbers[i] - numbers[i + 1])
if diff < min_diff:
min_diff = diff
closest_pair = (numbers[i], numbers[i + 1])
return closest_pair
Start time: 2023-07-18 18:50:13
Duration: 18.54s
Completion tokens: 251
Result: Pass
from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
numbers.sort()
closest = (numbers[0], numbers[1])
min_diff = abs(numbers[1] - numbers[0])
for i in range(1, len(numbers) - 1):
diff = abs(numbers[i+1] - numbers[i])
if diff < min_diff:
min_diff = diff
closest = (numbers[i], numbers[i+1])
return closest
Start time: 2023-07-18 18:49:51
Duration: 21.81s
Completion tokens: 253
Result: Pass
from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
numbers.sort()
closest = (numbers[0], numbers[1])
min_diff = abs(numbers[0] - numbers[1])
for i in range(1, len(numbers) - 1):
diff = abs(numbers[i] - numbers[i + 1])
if diff < min_diff:
min_diff = diff
closest = (numbers[i], numbers[i + 1])
return closest
Start time: 2023-07-18 18:49:28
Duration: 23.11s
Completion tokens: 253
Result: Pass
from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
numbers.sort()
closest = (numbers[0], numbers[1])
min_diff = abs(numbers[0] - numbers[1])
for i in range(1, len(numbers) - 1):
diff = abs(numbers[i] - numbers[i + 1])
if diff < min_diff:
min_diff = diff
closest = (numbers[i], numbers[i + 1])
return closest
Start time: 2023-07-18 18:49:04
Duration: 24.1s
Completion tokens: 251
Result: Pass
from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
numbers.sort()
closest = (numbers[0], numbers[1])
min_diff = abs(numbers[1] - numbers[0])
for i in range(1, len(numbers) - 1):
diff = abs(numbers[i+1] - numbers[i])
if diff < min_diff:
min_diff = diff
closest = (numbers[i], numbers[i+1])
return closest
Start time: 2023-07-18 18:48:43
Duration: 20.73s
Completion tokens: 251
Result: Pass
from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
numbers.sort()
closest = (numbers[0], numbers[1])
min_diff = abs(numbers[0] - numbers[1])
for i in range(1, len(numbers) - 1):
diff = abs(numbers[i] - numbers[i+1])
if diff < min_diff:
min_diff = diff
closest = (numbers[i], numbers[i+1])
return closest
Start time: 2023-07-18 18:48:17
Duration: 26.27s
Completion tokens: 247
Result: Pass
from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
numbers.sort()
closest = (numbers[0], numbers[1])
min_diff = abs(numbers[1] - numbers[0])
for i in range(2, len(numbers)):
diff = abs(numbers[i] - numbers[i-1])
if diff < min_diff:
min_diff = diff
closest = (numbers[i-1], numbers[i])
return closest
Start time: 2023-07-18 18:47:58
Duration: 18.56s
Completion tokens: 258
Result: Pass
from typing import List, Tuple
def find_closest_elements(numbers: List[float]) -> Tuple[float, float]:
""" From a supplied list of numbers (of length at least two) select and return two that are the closest to each
other and return them in order (smaller number, larger number).
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.2])
(2.0, 2.2)
>>> find_closest_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0])
(2.0, 2.0)
"""
numbers.sort()
closest_pair = (numbers[0], numbers[1])
min_diff = abs(numbers[0] - numbers[1])
for i in range(1, len(numbers) - 1):
diff = abs(numbers[i] - numbers[i + 1])
if diff < min_diff:
min_diff = diff
closest_pair = (numbers[i], numbers[i + 1])
return closest_pair