Code for GUIDE: Creating Semantic Domain Dictionaries for Low-Resource Languages, published at SIGTYP 2024.
Existing (black) semantic domain dictionary entries in FLEx and correct (green) and incorrect (red) new predictions: The upper image shows three entries that GUIDE added to the English dictionary and the lower image shows seven entries for the same semantic domain question in the newly created Mina-Gen dictionary.
You need the Conda package manager to install the requirements. Furthermore, you need Git LFS to setup the repository. To install the requirements:
chmod +x setup.sh
./setup.sh
This setup has been tested on an ASUS machine ESC8000 G4 with Ubuntu 22.04.
You can skip the preprocessing and directly start to train the model by using the prepared file final_mag.cpickle
.
(MAG stands for "Multilingual Alignment Graph".)
If you want to reproduce the preprocessing, run:
conda activate guide_env
python -m src.preprocess --output-directory data/0_state/ && python -m src.gnn.refine_mag --input-mag-directory data/0_state/ --output-mag-file final_mag.cpickle
Note that the preprocessing does not include the Igbo and Gen-Mina languages because the source Bible translations are copyrighted.
To train GUIDE, run this command:
conda activate guide_env
CUDA_VISIBLE_DEVICES=0 python -m src.gnn.train --input-mag-file final_mag.cpickle --output-model-file my_trained_model.bin --output-data-split-file my_data_split.bin
To evaluate GUIDE, run:
conda activate guide_env
CUDA_VISIBLE_DEVICES=0 python -m src.gnn.eval --input-mag-file final_mag.cpickle --input-model-file my_trained_model.bin --input-data-split-file my_data_split.bin --output-results-file my_results.json
The data split file and model file will be created during training.
model.bin
contains the pretrained model, trained with a batch size of 6,000, a learning rate of 0.05, and early
stopping patience after 5 epochs with a warmup of 30 epochs.
Our work establishes a new benchmark for linking words to their semantic domain questions. To the best of our knowledge, we propose the first automated approach to address this task.
Evaluation/Language | Precision | Recall | F1 | Manual Precision | # Predicted links |
---|---|---|---|---|---|
Evaluation with dataset | Manual | ||||
Random baseline | 0.00 | 0.500 | 0.000 | n/a | 741,033,563 |
DEVELOPMENT | |||||
Bengali | 0.22 ± 0.11 | 0.002 ± 0.001 | 0.004 ± 0.003 | 0.56 | 2,809 (2,770) |
Chinese (simplified) | 0.17 ± 0.02 | 0.014 ± 0.002 | 0.026 ± 0.004 | 0.34 | 5,752 (5,036) |
English | 0.63 ± 0.02 | 0.125 ± 0.006 | 0.208 ± 0.009 | 0.86 | 7,119 (2,314) |
French | 0.59 ± 0.03 | 0.097 ± 0.005 | 0.167 ± 0.008 | 0.78 | 6,993 (2,527) |
Hindi | 0.25 ± 0.02 | 0.029 ± 0.003 | 0.051 ± 0.006 | 0.78 | 3,914 (2,835) |
Indonesian | 0.34 ± 0.05 | 0.035 ± 0.005 | 0.064 ± 0.009 | 0.77 | 1,799 (1,068) |
Kupang Malay | 0.14 ± 0.05 | 0.013 ± 0.005 | 0.024 ± 0.009 | 0.79 | 1,440 (1,351) |
Malayalam | 0.10 ± 0.03 | 0.015 ± 0.004 | 0.026 ± 0.007 | 0.43 | 2,768 (2,480) |
Nepali | 0.20 ± 0.01 | 0.022 ± 0.002 | 0.039 ± 0.004 | 0.38 | 2,641 (2,156) |
Portuguese | 0.43 ± 0.02 | 0.088 ± 0.006 | 0.146 ± 0.009 | 0.86 | 6,759 (3,737) |
Spanish | 0.59 ± 0.02 | 0.090 ± 0.005 | 0.155 ± 0.008 | 0.84 | 7,614 (3,579) |
Swahili | 0.33 ± 0.04 | 0.018 ± 0.003 | 0.033 ± 0.005 | 0.75 | 2,320 (2,020) |
TEST | |||||
German | n/a | n/a | n/a | 0.67 | 5,022 |
Hiri Motu | n/a | n/a | n/a | 0.62 | 1,190 |
Igbo | n/a | n/a | n/a | 0.45 | 1,405 |
Mina-Gen | n/a | n/a | n/a | 0.80 | 3,063 |
Motu | n/a | n/a | n/a | 0.32 | 2,731 |
South Azerbaijani | n/a | n/a | n/a | 0.58 | 2,238 |
Tok Pisin | n/a | n/a | n/a | 0.69 | 880 |
Yoruba | n/a | n/a | n/a | 0.63 | 2,637 |
AVERAGES | |||||
Development set | 0.33 ± 0.04 | 0.046 ± 0.004 | 0.079 ± 0.007 | 0.68 ± 0.19 | 4,327 ± 2,338 |
Test set | n/a | n/a | n/a | 0.60 ± 0.15 | 2,396 ± 1,324 |
Stanza | 0.43 ± 0.02 | 0.068 ± 0.005 | 0.117 ± 0.008 | 0.74 ± 0.17 | 5,622 ± 1,975 |
SentencePiece | 0.21 ± 0.05 | 0.014 ± 0.003 | 0.026 ± 0.005 | 0.53 ± 0.13 | 2,364 ± 524 |
Punctuation mark split | 0.14 ± 0.05 | 0.013 ± 0.005 | 0.024 ± 0.009 | 0.64 ± 0.18 | 1,990 ± 927 |
Total | 0.33 ± 0.04 | 0.046 ± 0.004 | 0.079 ± 0.007 | 0.65 ± 0.18 | 3,555 ± 2,180 |
If you would like to contribute, find bugs, or have any suggestions for this project, you can contact me at [email protected] or open an issue on this GitHub repository.
All contributions are welcome. All content in this repository is licensed under the MIT License.