-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain_picie.py
executable file
·367 lines (297 loc) · 17.5 KB
/
train_picie.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
import argparse
import os
import time as t
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import *
from commons import *
from modules import fpn
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--data_root', type=str, required=True)
parser.add_argument('--save_root', type=str, required=True)
parser.add_argument('--restart_path', type=str)
parser.add_argument('--comment', type=str, default='')
parser.add_argument('--seed', type=int, default=2021, help='Random seed for reproducability.')
parser.add_argument('--num_workers', type=int, default=4, help='Number of workers.')
parser.add_argument('--restart', action='store_true', default=False)
parser.add_argument('--num_epoch', type=int, default=10)
parser.add_argument('--repeats', type=int, default=0)
# Train.
parser.add_argument('--arch', type=str, default='resnet18')
parser.add_argument('--pretrain', action='store_true', default=False)
parser.add_argument('--res', type=int, default=320, help='Input size.')
parser.add_argument('--res1', type=int, default=320, help='Input size scale from.')
parser.add_argument('--res2', type=int, default=640, help='Input size scale to.')
parser.add_argument('--batch_size_cluster', type=int, default=256)
parser.add_argument('--batch_size_train', type=int, default=128)
parser.add_argument('--batch_size_test', type=int, default=128)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--weight_decay', type=float, default=0)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--optim_type', type=str, default='Adam')
parser.add_argument('--num_init_batches', type=int, default=30)
parser.add_argument('--num_batches', type=int, default=30)
parser.add_argument('--kmeans_n_iter', type=int, default=30)
parser.add_argument('--in_dim', type=int, default=128)
parser.add_argument('--X', type=int, default=80)
# Loss.
parser.add_argument('--metric_train', type=str, default='cosine')
parser.add_argument('--metric_test', type=str, default='cosine')
parser.add_argument('--K_train', type=int, default=27) # COCO Stuff-15 / COCO Thing-12 / COCO All-27
parser.add_argument('--K_test', type=int, default=27)
parser.add_argument('--no_balance', action='store_true', default=False)
parser.add_argument('--mse', action='store_true', default=False)
# Dataset.
parser.add_argument('--augment', action='store_true', default=False)
parser.add_argument('--equiv', action='store_true', default=False)
parser.add_argument('--min_scale', type=float, default=0.5)
parser.add_argument('--stuff', action='store_true', default=False)
parser.add_argument('--thing', action='store_true', default=False)
parser.add_argument('--jitter', action='store_true', default=False)
parser.add_argument('--grey', action='store_true', default=False)
parser.add_argument('--blur', action='store_true', default=False)
parser.add_argument('--h_flip', action='store_true', default=False)
parser.add_argument('--v_flip', action='store_true', default=False)
parser.add_argument('--random_crop', action='store_true', default=False)
parser.add_argument('--val_type', type=str, default='train')
parser.add_argument('--version', type=int, default=7)
parser.add_argument('--fullcoco', action='store_true', default=False)
# Eval-only
parser.add_argument('--eval_only', action='store_true', default=False)
parser.add_argument('--eval_path', type=str)
# Cityscapes-specific.
parser.add_argument('--cityscapes', action='store_true', default=False)
parser.add_argument('--label_mode', type=str, default='gtFine')
parser.add_argument('--long_image', action='store_true', default=False)
return parser.parse_args()
def train(args, logger, dataloader, model, classifier1, classifier2, criterion1, criterion2, optimizer, epoch):
losses = AverageMeter()
losses_mse = AverageMeter()
losses_cet = AverageMeter()
losses_cet_across = AverageMeter()
losses_cet_within = AverageMeter()
# switch to train mode
model.train()
if args.mse:
criterion_mse = torch.nn.MSELoss().cuda()
classifier1.eval()
classifier2.eval()
for i, (indice, input1, input2, label1, label2) in enumerate(dataloader):
input1 = eqv_transform_if_needed(args, dataloader, indice, input1.cuda(non_blocking=True))
label1 = label1.cuda(non_blocking=True)
featmap1 = model(input1)
input2 = input2.cuda(non_blocking=True)
label2 = label2.cuda(non_blocking=True)
featmap2 = eqv_transform_if_needed(args, dataloader, indice, model(input2))
B, C, _ = featmap1.size()[:3]
if i == 0:
logger.info('Batch input size : {}'.format(list(input1.shape)))
logger.info('Batch label size : {}'.format(list(label1.shape)))
logger.info('Batch feature size : {}\n'.format(list(featmap1.shape)))
if args.metric_train == 'cosine':
featmap1 = F.normalize(featmap1, dim=1, p=2)
featmap2 = F.normalize(featmap2, dim=1, p=2)
featmap12_processed, label12_processed = featmap1, label2.flatten()
featmap21_processed, label21_processed = featmap2, label1.flatten()
# Cross-view loss
output12 = feature_flatten(classifier2(featmap12_processed)) # NOTE: classifier2 is coupled with label2
output21 = feature_flatten(classifier1(featmap21_processed)) # NOTE: classifier1 is coupled with label1
loss12 = criterion2(output12, label12_processed)
loss21 = criterion1(output21, label21_processed)
loss_across = (loss12 + loss21) / 2.
losses_cet_across.update(loss_across.item(), B)
featmap11_processed, label11_processed = featmap1, label1.flatten()
featmap22_processed, label22_processed = featmap2, label2.flatten()
# Within-view loss
output11 = feature_flatten(classifier1(featmap11_processed)) # NOTE: classifier1 is coupled with label1
output22 = feature_flatten(classifier2(featmap22_processed)) # NOTE: classifier2 is coupled with label2
loss11 = criterion1(output11, label11_processed)
loss22 = criterion2(output22, label22_processed)
loss_within = (loss11 + loss22) / 2.
losses_cet_within.update(loss_within.item(), B)
loss = (loss_across + loss_within) / 2.
losses_cet.update(loss.item(), B)
if args.mse:
loss_mse = criterion_mse(featmap1, featmap2)
losses_mse.update(loss_mse.item(), B)
loss = (loss + loss_mse) / 2.
# record loss
losses.update(loss.item(), B)
# compute gradient and do step
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i % 200) == 0:
logger.info('{0} / {1}\t'.format(i, len(dataloader)))
return losses.avg, losses_cet.avg, losses_cet_within.avg, losses_cet_across.avg, losses_mse.avg
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 20 epochs"""
lr = args.lr * (0.1 ** (epoch // args.decay_epoch))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def main(args, logger):
logger.info(args)
# Use random seed.
fix_seed_for_reproducability(args.seed)
# Start time.
t_start = t.time()
# Get model and optimizer.
model, optimizer, classifier1 = get_model_and_optimizer(args, logger)
# New trainset inside for-loop.
inv_list, eqv_list = get_transform_params(args)
trainset = get_dataset(args, mode='train', inv_list=inv_list, eqv_list=eqv_list)
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=args.batch_size_cluster,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
collate_fn=collate_train,
worker_init_fn=worker_init_fn(args.seed))
testset = get_dataset(args, mode='train_val')
testloader = torch.utils.data.DataLoader(testset,
batch_size=args.batch_size_test,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
collate_fn=collate_eval,
worker_init_fn=worker_init_fn(args.seed))
# Before train.
_, _ = evaluate(args, logger, testloader, classifier1, model)
if not args.eval_only:
# Train start.
for epoch in range(args.start_epoch, args.num_epoch):
# Assign probs.
trainloader.dataset.mode = 'compute'
trainloader.dataset.reshuffle()
# Adjust lr if needed.
# adjust_learning_rate(optimizer, epoch, args)
logger.info('\n============================= [Epoch {}] =============================\n'.format(epoch))
logger.info('Start computing centroids.')
t1 = t.time()
centroids1, kmloss1 = run_mini_batch_kmeans(args, logger, trainloader, model, view=1)
centroids2, kmloss2 = run_mini_batch_kmeans(args, logger, trainloader, model, view=2)
logger.info('-Centroids ready. [Loss: {:.5f}| {:.5f}/ Time: {}]\n'.format(kmloss1, kmloss2, get_datetime(int(t.time())-int(t1))))
# Compute cluster assignment.
t2 = t.time()
weight1 = compute_labels(args, logger, trainloader, model, centroids1, view=1)
weight2 = compute_labels(args, logger, trainloader, model, centroids2, view=2)
logger.info('-Cluster labels ready. [{}]\n'.format(get_datetime(int(t.time())-int(t2))))
# Criterion.
if not args.no_balance:
criterion1 = torch.nn.CrossEntropyLoss(weight=weight1).cuda()
criterion2 = torch.nn.CrossEntropyLoss(weight=weight2).cuda()
else:
criterion1 = torch.nn.CrossEntropyLoss().cuda()
criterion2 = torch.nn.CrossEntropyLoss().cuda()
# Setup nonparametric classifier.
classifier1 = initialize_classifier(args)
classifier2 = initialize_classifier(args)
classifier1.module.weight.data = centroids1.unsqueeze(-1).unsqueeze(-1)
classifier2.module.weight.data = centroids2.unsqueeze(-1).unsqueeze(-1)
freeze_all(classifier1)
freeze_all(classifier2)
# Delete since no longer needed.
del centroids1
del centroids2
# Set-up train loader.
trainset.mode = 'train'
trainloader_loop = torch.utils.data.DataLoader(trainset,
batch_size=args.batch_size_train,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
collate_fn=collate_train,
worker_init_fn=worker_init_fn(args.seed))
logger.info('Start training ...')
train_loss, train_cet, cet_within, cet_across, train_mse = train(args, logger, trainloader_loop, model, classifier1, classifier2, criterion1, criterion2, optimizer, epoch)
acc1, res1 = evaluate(args, logger, testloader, classifier1, model)
acc2, res2 = evaluate(args, logger, testloader, classifier2, model)
logger.info('============== Epoch [{}] =============='.format(epoch))
logger.info(' Time: [{}]'.format(get_datetime(int(t.time())-int(t1))))
logger.info(' K-Means loss : {:.5f} | {:.5f}'.format(kmloss1, kmloss2))
logger.info(' Training Total Loss : {:.5f}'.format(train_loss))
logger.info(' Training CE Loss (Total | Within | Across) : {:.5f} | {:.5f} | {:.5f}'.format(train_cet, cet_within, cet_across))
logger.info(' Training MSE Loss (Total) : {:.5f}'.format(train_mse))
logger.info(' [View 1] ACC: {:.4f} | mIoU: {:.4f}'.format(acc1, res1['mean_iou']))
logger.info(' [View 2] ACC: {:.4f} | mIoU: {:.4f}'.format(acc2, res2['mean_iou']))
logger.info('========================================\n')
torch.save({'epoch': epoch+1,
'args' : args,
'state_dict': model.state_dict(),
'classifier1_state_dict' : classifier1.state_dict(),
'classifier2_state_dict' : classifier2.state_dict(),
'optimizer' : optimizer.state_dict(),
},
os.path.join(args.save_model_path, 'checkpoint_{}.pth.tar'.format(epoch)))
torch.save({'epoch': epoch+1,
'args' : args,
'state_dict': model.state_dict(),
'classifier1_state_dict' : classifier1.state_dict(),
'classifier2_state_dict' : classifier2.state_dict(),
'optimizer' : optimizer.state_dict(),
},
os.path.join(args.save_model_path, 'checkpoint.pth.tar'))
# Evaluate.
trainset = get_dataset(args, mode='eval_val')
trainloader = torch.utils.data.DataLoader(trainset,
batch_size=args.batch_size_cluster,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True,
collate_fn=collate_train,
worker_init_fn=worker_init_fn(args.seed))
testset = get_dataset(args, mode='eval_test')
testloader = torch.utils.data.DataLoader(testset,
batch_size=args.batch_size_test,
shuffle=False,
num_workers=args.num_workers,
pin_memory=True,
collate_fn=collate_eval,
worker_init_fn=worker_init_fn(args.seed))
# Evaluate with fresh clusters.
acc_list_new = []
res_list_new = []
logger.info('Start computing centroids.')
if args.repeats > 0:
for _ in range(args.repeats):
t1 = t.time()
centroids1, kmloss1 = run_mini_batch_kmeans(args, logger, trainloader, model, view=-1)
logger.info('-Centroids ready. [Loss: {:.5f}/ Time: {}]\n'.format(kmloss1, get_datetime(int(t.time())-int(t1))))
classifier1 = initialize_classifier(args)
classifier1.module.weight.data = centroids1.unsqueeze(-1).unsqueeze(-1)
freeze_all(classifier1)
acc_new, res_new = evaluate(args, logger, testloader, classifier1, model)
acc_list_new.append(acc_new)
res_list_new.append(res_new)
else:
acc_new, res_new = evaluate(args, logger, testloader, classifier1, model)
acc_list_new.append(acc_new)
res_list_new.append(res_new)
logger.info('Average overall pixel accuracy [NEW] : {:.3f} +/- {:.3f}.'.format(np.mean(acc_list_new), np.std(acc_list_new)))
logger.info('Average mIoU [NEW] : {:.3f} +/- {:.3f}. '.format(np.mean([res['mean_iou'] for res in res_list_new]),
np.std([res['mean_iou'] for res in res_list_new])))
logger.info('Experiment done. [{}]\n'.format(get_datetime(int(t.time())-int(t_start))))
if __name__=='__main__':
args = parse_arguments()
# Setup the path to save.
if not args.pretrain:
args.save_root += '/scratch'
if args.augment:
args.save_root += '/augmented/res1={}_res2={}/jitter={}_blur={}_grey={}'.format(args.res1, args.res2, args.jitter, args.blur, args.grey)
if args.equiv:
args.save_root += '/equiv/h_flip={}_v_flip={}_crop={}/min_scale\={}'.format(args.h_flip, args.v_flip, args.random_crop, args.min_scale)
if args.no_balance:
args.save_root += '/no_balance'
if args.mse:
args.save_root += '/mse'
args.save_model_path = os.path.join(args.save_root, args.comment, 'K_train={}_{}'.format(args.K_train, args.metric_train))
args.save_eval_path = os.path.join(args.save_model_path, 'K_test={}_{}'.format(args.K_test, args.metric_test))
if not os.path.exists(args.save_eval_path):
os.makedirs(args.save_eval_path)
# Setup logger.
logger = set_logger(os.path.join(args.save_eval_path, 'train.log'))
# Start.
main(args, logger)