Skip to content

Latest commit

 

History

History
112 lines (88 loc) · 4.38 KB

README.md

File metadata and controls

112 lines (88 loc) · 4.38 KB

nz-bank-account-validator

npm

A validator for New Zealand bank accounts

Installation

npm install --save @fnzc/nz-bank-account-validator

or

yarn add @fnzc/nz-bank-account-validator

Usage

Function requires four string parameters:

  • Bank ID
  • Bank Branch
  • Account Base
  • Suffix Returns a boolean.
var bankAccountValidator = require('@fnzc/nz-bank-account-validator');
bankAccountValidator.isValidNZBankNumber('00', '0000', '00000000', '000');

Algorithm

The algorithm is based on the 'Non-Resident Withholding Tax And Resident Withholding Tax Specification Document' issues by the Inland Revenue on the 31st of March 2016.

Bank account number validation

The bank account number format used by all banks is numeric and includes the following parts:

  • Bank ID (maximum 2 digits)
  • Bank branch (maximum 4 digits)
  • Account base number (maximum 8 digits)
  • Account suffix (maximum 4 digits).

For processing at Inland Revenue the fields for the individual account number parts are all of maximum size. If less than the maximum number of digits is supplied, then values are right justified and the fields padded with zeroes (where applicable).

The first step in the validation process is to verify the bank branch number. For every bank ID, a range of branch numbers is allocated. If the bank ID is not one of those listed below or the branch number is not included in the range(s) specified, the bank account number is invalid. If the branch number is valid, then derive the appropriate code from the “Algorithm” column below and perform the second validation step as outlined in the first paragraph over the page.

Bank ID Valid Branch Numbers Algorithm
01 0001 - 0999, 1100 - 1199, 1800 - 1899 See note
02 0001 - 0999, 1200 - 1299 See note
03 0001 - 0999, 1300 - 1399, 1500 - 1599, 1700 – 1799 , 1900 - 1999 See note
04 2020 - 2024
06 0001 - 0999, 1400 - 1499 See note
08 6500 - 6599 D
09 0000 E
10 5165 - 5169 See note
11 5000 - 6499, 6600 - 8999 See note
12 3000 - 3299, 3400 – 3499, 3600 - 3699 See note
13 4900 - 4999 See note
14 4700 - 4799 See note
15 3900 - 3999 See note
16 4400 - 4499 See note
17 3300 - 3399 See note
18 3500 - 3599 See note
19 4600 - 4649 See note
20 4100 - 4199 See note
21 4800 - 4899 See note
22 4000 - 4049 See note
23 3700 - 3799 See note
24 4300 - 4349 See note
25 2500 - 2599 F
26 2600 - 2699 G
27 3800 - 3849 See note
28 2100 - 2149 G
29 2150 - 2299 G
30 2900 - 2949 See note
31 2800 - 2849 X
33 6700 - 6799 F
35 2400 - 2499 See note
38 9000 - 9499 See note
88 8800 - 8805

Note: If the account base number is below 00990000 then apply algorithm A, otherwise apply algorithm B.

The second validation step is a modulus n algorithm applied to the whole account number. The algorithm type is derived from the table on the previous page. Follow this process:

  • Identify the corresponding weight factor for every digit in the account number as showninthetablebelow. Note:allfields(iebankID,bankbranch,accountbase and account suffix) are right justified and padded with zeroes.
  • Add together the products of the weight factors and their associated account number digit. If the algorithm E or G is used then add the two digits of the product (tens and ones), and again the two digits of the result before summing (see example 3 on page 16).
  • Divide the sum by the value in the “Modulo” column below. If the remainder is zero then the bank account number is valid.
Algorithm Bank Branch Account Base Suffix Modulo
A 00 6379 00A58421 0000 11
B 00 0000 00A58421 0000 11
C 37 0000 91A53421 0000 11
D 00 0000 07654321 0000 11
E 00 0000 00005432 0001 11
F 00 0000 01731731 0000 10
G 00 0000 01371371 0371 10
X 00 0000 00000000 0000 1

Note 1: Algorithm C is not currently used by the banks. Note 2: Algorithm X (for Bank ID 31) always verifies the bank account number to be valid. It is included in this table so the same validation logic can be applied to all account numbers.

Contributing

Pull requests are welcome.