forked from nagadomi/waifu2x
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.lua
271 lines (261 loc) · 8.98 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
require 'pl'
local __FILE__ = (function() return string.gsub(debug.getinfo(2, 'S').source, "^@", "") end)()
package.path = path.join(path.dirname(__FILE__), "lib", "?.lua;") .. package.path
require 'optim'
require 'xlua'
require 'w2nn'
local settings = require 'settings'
local srcnn = require 'srcnn'
local minibatch_adam = require 'minibatch_adam'
local iproc = require 'iproc'
local reconstruct = require 'reconstruct'
local compression = require 'compression'
local pairwise_transform = require 'pairwise_transform'
local image_loader = require 'image_loader'
local function save_test_scale(model, rgb, file)
local up = reconstruct.scale(model, settings.scale, rgb)
image.save(file, up)
end
local function save_test_jpeg(model, rgb, file)
local im, count = reconstruct.image(model, rgb)
image.save(file, im)
end
local function split_data(x, test_size)
local index = torch.randperm(#x)
local train_size = #x - test_size
local train_x = {}
local valid_x = {}
for i = 1, train_size do
train_x[i] = x[index[i]]
end
for i = 1, test_size do
valid_x[i] = x[index[train_size + i]]
end
return train_x, valid_x
end
local function make_validation_set(x, transformer, n, patches)
n = n or 4
local data = {}
for i = 1, #x do
for k = 1, math.max(n / patches, 1) do
local xy = transformer(x[i], true, patches)
local tx = torch.Tensor(patches, xy[1][1]:size(1), xy[1][1]:size(2), xy[1][1]:size(3))
local ty = torch.Tensor(patches, xy[1][2]:size(1), xy[1][2]:size(2), xy[1][2]:size(3))
for j = 1, #xy do
tx[j]:copy(xy[j][1])
ty[j]:copy(xy[j][2])
end
table.insert(data, {x = tx, y = ty})
end
xlua.progress(i, #x)
collectgarbage()
end
return data
end
local function validate(model, criterion, data)
local loss = 0
for i = 1, #data do
local z = model:forward(data[i].x:cuda())
loss = loss + criterion:forward(z, data[i].y:cuda())
if i % 100 == 0 then
xlua.progress(i, #data)
collectgarbage()
end
end
xlua.progress(#data, #data)
return loss / #data
end
local function create_criterion(model)
if reconstruct.is_rgb(model) then
local offset = reconstruct.offset_size(model)
local output_w = settings.crop_size - offset * 2
local weight = torch.Tensor(3, output_w * output_w)
weight[1]:fill(0.29891 * 3) -- R
weight[2]:fill(0.58661 * 3) -- G
weight[3]:fill(0.11448 * 3) -- B
return w2nn.ClippedWeightedHuberCriterion(weight, 0.1, {0.0, 1.0}):cuda()
else
local offset = reconstruct.offset_size(model)
local output_w = settings.crop_size - offset * 2
local weight = torch.Tensor(1, output_w * output_w)
weight[1]:fill(1.0)
return w2nn.ClippedWeightedHuberCriterion(weight, 0.1, {0.0, 1.0}):cuda()
end
end
local function transformer(x, is_validation, n, offset)
x = compression.decompress(x)
n = n or settings.patches
if is_validation == nil then is_validation = false end
local random_color_noise_rate = nil
local random_overlay_rate = nil
local active_cropping_rate = nil
local active_cropping_tries = nil
if is_validation then
active_cropping_rate = settings.active_cropping_rate
active_cropping_tries = settings.active_cropping_tries
random_color_noise_rate = 0.0
random_overlay_rate = 0.0
else
active_cropping_rate = settings.active_cropping_rate
active_cropping_tries = settings.active_cropping_tries
random_color_noise_rate = settings.random_color_noise_rate
random_overlay_rate = settings.random_overlay_rate
end
if settings.method == "scale" then
return pairwise_transform.scale(x,
settings.scale,
settings.crop_size, offset,
n,
{
downsampling_filters = settings.downsampling_filters,
random_half_rate = settings.random_half_rate,
random_color_noise_rate = random_color_noise_rate,
random_overlay_rate = random_overlay_rate,
random_unsharp_mask_rate = settings.random_unsharp_mask_rate,
max_size = settings.max_size,
active_cropping_rate = active_cropping_rate,
active_cropping_tries = active_cropping_tries,
rgb = (settings.color == "rgb")
})
elseif settings.method == "noise" then
return pairwise_transform.jpeg(x,
settings.style,
settings.noise_level,
settings.crop_size, offset,
n,
{
random_half_rate = settings.random_half_rate,
random_color_noise_rate = random_color_noise_rate,
random_overlay_rate = random_overlay_rate,
random_unsharp_mask_rate = settings.random_unsharp_mask_rate,
max_size = settings.max_size,
jpeg_chroma_subsampling_rate = settings.jpeg_chroma_subsampling_rate,
active_cropping_rate = active_cropping_rate,
active_cropping_tries = active_cropping_tries,
nr_rate = settings.nr_rate,
rgb = (settings.color == "rgb")
})
end
end
local function resampling(x, y, train_x, transformer, input_size, target_size)
print("## resampling")
for t = 1, #train_x do
xlua.progress(t, #train_x)
local xy = transformer(train_x[t], false, settings.patches)
for i = 1, #xy do
local index = (t - 1) * settings.patches + i
x[index]:copy(xy[i][1])
y[index]:copy(xy[i][2])
end
if t % 50 == 0 then
collectgarbage()
end
end
end
local function plot(train, valid)
gnuplot.plot({
{'training', torch.Tensor(train), '-'},
{'validation', torch.Tensor(valid), '-'}})
end
local function train()
local hist_train = {}
local hist_valid = {}
local LR_MIN = 1.0e-5
local model = srcnn.create(settings.method, settings.backend, settings.color)
local offset = reconstruct.offset_size(model)
local pairwise_func = function(x, is_validation, n)
return transformer(x, is_validation, n, offset)
end
local criterion = create_criterion(model)
local eval_metric = w2nn.PSNRCriterion():cuda()
local x = torch.load(settings.images)
local train_x, valid_x = split_data(x, math.floor(settings.validation_rate * #x))
local adam_config = {
learningRate = settings.learning_rate,
xBatchSize = settings.batch_size,
}
local lrd_count = 0
local ch = nil
if settings.color == "y" then
ch = 1
elseif settings.color == "rgb" then
ch = 3
end
local best_score = 0.0
print("# make validation-set")
local valid_xy = make_validation_set(valid_x, pairwise_func,
settings.validation_crops,
settings.patches)
valid_x = nil
collectgarbage()
model:cuda()
print("load .. " .. #train_x)
local x = torch.Tensor(settings.patches * #train_x,
ch, settings.crop_size, settings.crop_size)
local y = torch.Tensor(settings.patches * #train_x,
ch * (settings.crop_size - offset * 2) * (settings.crop_size - offset * 2)):zero()
for epoch = 1, settings.epoch do
model:training()
print("# " .. epoch)
resampling(x, y, train_x, pairwise_func)
for i = 1, settings.inner_epoch do
local train_score = minibatch_adam(model, criterion, eval_metric, x, y, adam_config)
print(train_score)
model:evaluate()
print("# validation")
local score = validate(model, eval_metric, valid_xy)
table.insert(hist_train, train_score.PSNR)
table.insert(hist_valid, score)
if settings.plot then
plot(hist_train, hist_valid)
end
if score > best_score then
local test_image = image_loader.load_float(settings.test) -- reload
lrd_count = 0
best_score = score
print("* update best model")
if settings.save_history then
torch.save(string.format(settings.model_file, epoch, i), model:clearState(), "ascii")
if settings.method == "noise" then
local log = path.join(settings.model_dir,
("noise%d_best.%d-%d.png"):format(settings.noise_level,
epoch, i))
save_test_jpeg(model, test_image, log)
elseif settings.method == "scale" then
local log = path.join(settings.model_dir,
("scale%.1f_best.%d-%d.png"):format(settings.scale,
epoch, i))
save_test_scale(model, test_image, log)
end
else
torch.save(settings.model_file, model:clearState(), "ascii")
if settings.method == "noise" then
local log = path.join(settings.model_dir,
("noise%d_best.png"):format(settings.noise_level))
save_test_jpeg(model, test_image, log)
elseif settings.method == "scale" then
local log = path.join(settings.model_dir,
("scale%.1f_best.png"):format(settings.scale))
save_test_scale(model, test_image, log)
end
end
else
lrd_count = lrd_count + 1
if lrd_count > 2 and adam_config.learningRate > LR_MIN then
adam_config.learningRate = adam_config.learningRate * 0.8
print("* learning rate decay: " .. adam_config.learningRate)
lrd_count = 0
end
end
print("current: " .. score .. ", best: " .. best_score)
collectgarbage()
end
end
end
if settings.gpu > 0 then
cutorch.setDevice(settings.gpu)
end
torch.manualSeed(settings.seed)
cutorch.manualSeed(settings.seed)
print(settings)
train()