-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathdemo_train.py
60 lines (53 loc) · 2.28 KB
/
demo_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# -*- coding: utf-8 -*-
import torch
import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm
from transformers import AdamW, get_linear_schedule_with_warmup
from model import LS_NER, Label_Encoder, Token_Encoder
from load_data import traindataloader
from load_label import label_input_ids, label_attention_mask
N_EPOCHS = 20
LR = 5e-4
WARMUP_PROPORTION = 0.1
MAX_GRAD_NORM = 1.0
MODEL_PATH = './bert-base-chinese'
device = "cuda" if torch.cuda.is_available() else 'cpu'
label_encoder = Label_Encoder.from_pretrained(MODEL_PATH)
token_encoder = Token_Encoder.from_pretrained(MODEL_PATH)
model = LS_NER(label_encoder, token_encoder)
model.to(device)
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': 0.01},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
total_steps = len(traindataloader) * N_EPOCHS
optimizer = AdamW(optimizer_grouped_parameters, lr=LR, eps=1e-8)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(WARMUP_PROPORTION * total_steps), num_training_steps=total_steps)
loss_vals = []
for epoch in range(N_EPOCHS):
model.train()
epoch_loss = []
#num = 0
pbar = tqdm(traindataloader)
pbar.set_description("[Train Epoch {}]".format(epoch))
for batch_idx, batch_data in enumerate(pbar):
token_input_ids = batch_data["input_ids"].to(device)
token_attention_mask = batch_data["attention_mask"].to(device)
label_ids = batch_data["label_ids"].to(device)
#num += len(token_input_ids)
model.zero_grad()
loss = model(label_input_ids, label_attention_mask, token_input_ids, token_attention_mask, label_ids)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), MAX_GRAD_NORM)
epoch_loss.append(loss.item())
optimizer.step()
scheduler.step()
#if num >= 3000:
# break
loss_vals.append(np.mean(epoch_loss))
plt.plot(np.linspace(1, N_EPOCHS, N_EPOCHS).astype(int), loss_vals)
label_encoder.save_pretrained('./saved_model_label_encoder')
token_encoder.save_pretrained('./saved_model_token_encoder')