-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathpredict.py
40 lines (35 loc) · 1.37 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# -*- coding: utf-8 -*-
import jieba
import torch
from load_data import UNK_IDX, SOS_IDX, EOS_IDX, vocab2id, id2vocab
from model import Encoder, Decoder, Seq2Seq
device = "cuda" if torch.cuda.is_available() else 'cpu'
INPUT_DIM = len(id2vocab)
OUTPUT_DIM = len(id2vocab)
ENC_EMB_DIM = 256
DEC_EMB_DIM = 256
HID_DIM = 512
N_LAYERS = 2
ENC_DROPOUT = 0.5
DEC_DROPOUT = 0.5
enc = Encoder(INPUT_DIM, ENC_EMB_DIM, HID_DIM, N_LAYERS, ENC_DROPOUT)
dec = Decoder(OUTPUT_DIM, DEC_EMB_DIM, HID_DIM, N_LAYERS, DEC_DROPOUT)
model = Seq2Seq(enc, dec, device).to(device)
model.load_state_dict(torch.load('model.pt'))
model.eval()
text = '中新网9月19日电据英国媒体报道,当地时间19日,苏格兰公投结果出炉,55%选民投下反对票,对独立说“不”。在结果公布前,英国广播公司(BBC)预测,苏格兰选民以55%对45%投票反对独立。'
tokens = [tok for tok in jieba.cut(text)]
tokens_idx = [SOS_IDX] + [vocab2id.get(word, UNK_IDX) for word in tokens] + [EOS_IDX]
tokens_idx = torch.tensor(tokens_idx)
print(tokens_idx)
res = []
hidden, cell = model.encoder(tokens_idx.unsqueeze(0).to(device))
inputs = torch.tensor([SOS_IDX]).to(device)
for t in range(1, 35):
output, hidden, cell = model.decoder(inputs, hidden, cell)
inputs = output.argmax(1)
word = id2vocab[inputs.item()]
res.append(word)
if word == '<eos>':
break
print(''.join(res))