DataFrames provide a new API for manipulating data within Spark. These provide a more user friendly experience than pure Scala for common queries. The Spark Cassandra Connector provides an integrated DataSource to make creating Cassandra DataFrames easy.
Spark Docs: Data Sources Data Frames
DataSources in Spark take a map of Options which define how the source should act. The Connector provides a CassandraSource which recognizes the following Key Value pairs. Those followed with a default of N/A are required, all others are optional.
Option Key | Controls | Values | Default |
---|---|---|---|
table | The Cassandra table to connect to | String | N/A |
keyspace | The keyspace where table is looked for | String | N/A |
cluster | The group of the Cluster Level Settings to inherit | String | "default" |
pushdown | Enables pushing down predicates to Cassandra when applicable | (true,false) | true |
Any normal Spark Connector configuration options for Connecting, Reading or Writing
can be passed through as DataFrame options as well. When using the read
command below these
options should appear exactly the same as when set in the SparkConf.
The connector also provides a way to describe the options which should be applied to all DataFrames within a cluster or within a keyspace. When a property has been specified at the table level it will override the default keyspace or cluster property.
To add these properties add keys to your SparkConf
in the format
clusterName:keyspaceName/propertyName.
sqlContext.setConf("ClusterOne/spark.cassandra.input.split.size_in_mb", "32")
sqlContext.setConf("default:test/spark.cassandra.input.split.size_in_mb", "128")
...
val df = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "words", "keyspace" -> "test"))
.load() // This DataFrame will use a spark.cassandra.input.size of 32
val otherdf = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "words", "keyspace" -> "test" , "cluster" -> "ClusterOne"))
.load() // This DataFrame will use a spark.cassandra.input.size of 128
val lastdf = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map(
"table" -> "words",
"keyspace" -> "test" ,
"cluster" -> "ClusterOne",
"spark.cassandra.input.split.size_in_mb" -> 48
)
).load() // This DataFrame will use a spark.cassandra.input.split.size of 48
There are also some helper method which simplifies setting Spark Cassandra Connector related parameters. They are a part
of CassandraSqlContext
:
// set params for all clusters and keyspaces
sqlContext.setConf(CassandraConnectorConf.KeepAliveMillisParam.option(10000))
// set params for the particular cluster
sqlContext.setConf("Cluster1", CassandraConnectorConf.ConnectionHostParam.option("127.0.0.1") ++ CassandraConnectorConf.ConnectionPortParam.option(12345))
sqlContext.setConf("Cluster2", CassandraConnectorConf.ConnectionHostParam.option("127.0.0.2"))
// set params for the particular keyspace
sqlContext.setConf("Cluster1", "ks1", ReadConf.SplitSizeInMBParam.option(128))
sqlContext.setConf("Cluster1", "ks2", ReadConf.SplitSizeInMBParam.option(64))
sqlContext.setConf("Cluster2", "ks3", ReadConf.SplitSizeInMBParam.option(80))
###Creating DataFrames using Read Commands
The most programmatic way to create a data frame is to invoke a read
command on the SQLContext. This
will build a DataFrameReader
. Specify format
as org.apache.spark.sql.cassandra
.
You can then use options
to give a map of Map[String,String]
of options as described above.
Then finish by calling load
to actually get a DataFrame
.
val df = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "words", "keyspace" -> "test" ))
.load()
df.show
word count
cat 30
fox 40
There are also some helper methods which can make creating data frames easier. They can be accessed after importing
org.apache.spark.sql.cassandra
package. In the following example, all the commands used to create a data frame are
equivalent:
import org.apache.spark.sql.cassandra._
val df1 = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map("table" -> "words", "keyspace" -> "test", "cluster" -> "cluster_A"))
.load()
val df2 = sqlContext
.read
.cassandraFormat("words", "test", "cluster_A")
.load()
Accessing data Frames using Spark SQL involves creating temporary tables and specifying the
source as org.apache.spark.sql.cassandra
. The OPTIONS
passed to this table are used to
establish a relation between the CassandraTable and the internally used DataSource.
Create Relation with the Cassandra table test.words
scala> sqlContext.sql(
"""CREATE TEMPORARY TABLE words
|USING org.apache.spark.sql.cassandra
|OPTIONS (
| table "words",
| keyspace "test",
| cluster "Test Cluster",
| pushdown "true"
|)""".stripMargin)
scala> val df = sqlContext.sql("SELECT * FROM words")
scala> df.show()
word count
cat 30
fox 40
scala> df.filter(df("count") > 30).show
word count
fox 40
In addition you can use Spark SQL on the registered tables:
sqlContext.sql("SELECT * FROM words WHERE word = 'fox'").collect
Array[org.apache.spark.sql.Row] = Array([fox,40])
###Persisting a DataFrame to Cassandra Using the Save Command DataFrames provide a save function which allows them to persist their data to another DataSource. The connector supports using this feature to persist a DataFrame a Cassandra Table.
val df = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "words", "keyspace" -> "test" ))
.load()
df.write
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "words_copy", "keyspace" -> "test"))
.save()
Similarly to reading Cassandra tables into data frames, we have some helper methods for the write path which are
provided by org.apache.spark.sql.cassandra
package. In the following example, all the commands are equivalent:
import org.apache.spark.sql.cassandra._
df.write
.format("org.apache.spark.sql.cassandra")
.options(Map("table" -> "words_copy", "keyspace" -> "test", "cluster" -> "cluster_B"))
.save()
df.write
.cassandraFormat("words_copy", "test", "cluster_B")
.save()
Connector specific options can be set by invoking options
method on either DataFrameReader
or DataFrameWriter
.
There are several settings you may want to change in ReadConf
, WriteConf
, CassandraConnectorConf
, AuthConf
and
others. Those settings are identified by instances of ConfigParameter
case class which offers an easy way to apply
the option which it represents to a DataFrameReader
or DataFrameWriter
.
Suppose we want to set spark.cassandra.read.timeout_ms
to 7 seconds on some DataFrameReader
, we can do this both
ways:
option("spark.cassandra.read.timeout_ms", "7000")
Since this setting is represented by CassandraConnectorConf.ReadTimeoutParam
we can simply do:
options(CassandraConnectorConf.ReadTimeoutParam.sqlOption("7000"))
Each parameter, that is, each instance of ConfigParameter
allows to invoke apply
method with a single parameter.
That method returns a Map[String, String]
(note that you need to use options
instead of option
) so setting
multiple parameters can be chained:
options(CassandraConnectorConf.ReadTimeoutParam.sqlOption("7000") ++ ReadConf.TaskMetricParam.sqlOption(true))
###Creating a New Cassandra Table From a DataFrame Schema
Spark Cassandra Connector adds a method to DataFrame
that allows it to create a new Cassandra table from
the StructType
schema of the DataFrame. This is convenient for persisting a DataFrame to a new table, especially
when the schema of the DataFrame is not known (fully or at all) ahead of time (at compile time of your application).
Once the new table is created, you can persist the DataFrame to the new table using the save function described above.
The partition key and clustering key of the newly generated table can be set by passing in a list of names of columns which should be used as partition key and clustering key.
// Add spark connector specific methods to DataFrame
import com.datastax.spark.connector._
val df = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "words", "keyspace" -> "test" ))
.load()
val renamed = df.withColumnRenamed("col1", "newcolumnname")
renamed.createCassandraTable(
"test",
"renamed",
partitionKeyColumns = Some(Seq("user")),
clusteringKeyColumns = Some(Seq("newcolumnname")))
renamed.write
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "renamed", "keyspace" -> "test"))
.save()
The DataFrame API will automatically pushdown valid where clauses to Cassandra as long as the pushdown option is enabled (defaults to enabled.)
Example Table
CREATE KEYSPACE test WITH replication = {'class': 'SimpleStrategy', 'replication_factor': 1 };
USE test;
CREATE table words (
user TEXT,
word TEXT,
count INT,
PRIMARY KEY (user, word));
INSERT INTO words (user, word, count ) VALUES ( 'Russ', 'dino', 10 );
INSERT INTO words (user, word, count ) VALUES ( 'Russ', 'fad', 5 );
INSERT INTO words (user, word, count ) VALUES ( 'Sam', 'alpha', 3 );
INSERT INTO words (user, word, count ) VALUES ( 'Zebra', 'zed', 100 );
First we can create a DataFrame and see that it has no pushdown filters
set in the log. This
means all requests will go directly to Cassandra and we will require reading all of the data to show
this DataFrame.
val df = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "words", "keyspace" -> "test"))
.load
df.explain
15/07/06 09:21:21 INFO CassandraSourceRelation: filters:
15/07/06 09:21:21 INFO CassandraSourceRelation: pushdown filters: //ArrayBuffer()
== Physical Plan ==
PhysicalRDD [user#0,word#1,count#2], MapPartitionsRDD[2] at explain //at <console>:22
df.show
15/07/06 09:26:03 INFO CassandraSourceRelation: filters:
15/07/06 09:26:03 INFO CassandraSourceRelation: pushdown filters: //ArrayBuffer()
+-----+-----+-----+
| user| word|count|
+-----+-----+-----+
|Zebra| zed| 100|
| Russ| dino| 10|
| Russ| fad| 5|
| Sam|alpha| 3|
+-----+-----+-----+
The example schema has a clustering key of "word" so we can pushdown filters on that column to Cassandra. We
do this by applying a normal DataFrame filter. The connector will automatically determine that the
filter can be pushed down and will add it to pushdown filters
. All of the elements of
pushdown filters
will be automatically added to the CQL requests made to Cassandra for the
data from this table. The subsequent call will then only serialize data from Cassandra which passes the filter,
reducing the load on Cassandra.
val dfWithPushdown = df.filter(df("word") > "ham")
dfWithPushdown.explain
15/07/06 09:29:10 INFO CassandraSourceRelation: filters: GreaterThan(word,ham)
15/07/06 09:29:10 INFO CassandraSourceRelation: pushdown filters: ArrayBuffer(GreaterThan(word,ham))
== Physical Plan ==
Filter (word#1 > ham)
PhysicalRDD [user#0,word#1,count#2], MapPartitionsRDD[18] at explain at <console>:24
dfWithPushdown.show
15/07/06 09:30:48 INFO CassandraSourceRelation: filters: GreaterThan(word,ham)
15/07/06 09:30:48 INFO CassandraSourceRelation: pushdown filters: ArrayBuffer(GreaterThan(word,ham))
+-----+----+-----+
| user|word|count|
+-----+----+-----+
|Zebra| zed| 100|
+-----+----+-----+
Example table
CREATE KEYSPACE IF NOT EXISTS pushdowns WITH replication = { 'class' : 'SimpleStrategy', 'replication_factor' : 3 };
USE pushdowns;
CREATE TABLE pushdownexample (
partitionkey1 BIGINT,
partitionkey2 BIGINT,
partitionkey3 BIGINT,
clusterkey1 BIGINT,
clusterkey2 BIGINT,
clusterkey3 BIGINT,
regularcolumn BIGINT,
PRIMARY KEY ((partitionkey1, partitionkey2, partitionkey3), clusterkey1, clusterkey2, clusterkey3)
);
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.implicits._
val df = sqlContext
.read
.format("org.apache.spark.sql.cassandra")
.options(Map( "table" -> "pushdownexample", "keyspace" -> "pushdowns" ))
.load()
To push down partition keys, all of them must be included, but not more than one predicate per partition key, otherwise nothing is pushed down.
df.filter("partitionkey1 = 1 AND partitionkey2 = 1 AND partitionkey3 = 1").show()
INFO 2015-08-26 00:37:40 org.apache.spark.sql.cassandra.CassandraSourceRelation: filters: EqualTo(partitionkey1,1), EqualTo(partitionkey2,1), EqualTo(partitionkey3,1)
INFO 2015-08-26 00:37:40 org.apache.spark.sql.cassandra.CassandraSourceRelation: pushdown filters: ArrayBuffer(EqualTo(partitionkey1,1), EqualTo(partitionkey2,1), EqualTo(partitionkey3,1))
One partition key left out:
df.filter("partitionkey1 = 1 AND partitionkey2 = 1").show()
INFO 2015-08-26 00:53:07 org.apache.spark.sql.cassandra.CassandraSourceRelation: filters: EqualTo(partitionkey1,1), EqualTo(partitionkey2,1)
INFO 2015-08-26 00:53:07 org.apache.spark.sql.cassandra.CassandraSourceRelation: pushdown filters: ArrayBuffer()
More than one predicate for partitionkey3
:
df.filter("partitionkey1 = 1 AND partitionkey2 = 1 AND partitionkey3 > 0 AND partitionkey3 < 5").show()
INFO 2015-08-26 00:54:03 org.apache.spark.sql.cassandra.CassandraSourceRelation: filters: EqualTo(partitionkey1,1), EqualTo(partitionkey2,1), GreaterThan(partitionkey3,0), LessThan(partitionkey3,5)
INFO 2015-08-26 00:54:03 org.apache.spark.sql.cassandra.CassandraSourceRelation: pushdown filters: ArrayBuffer()
Clustering keys are more relaxed. But only the last predicate can be non-EQ, and if there is more than one predicate for a column, they must not be EQ or IN, otherwise only some predicates may be pushed down.
df.filter("clusterkey1 = 1 AND clusterkey2 > 0 AND clusterkey2 < 10").show()
INFO 2015-08-26 01:01:02 org.apache.spark.sql.cassandra.CassandraSourceRelation: filters: EqualTo(clusterkey1,1), GreaterThan(clusterkey2,0), LessThan(clusterkey2,10)
INFO 2015-08-26 01:01:02 org.apache.spark.sql.cassandra.CassandraSourceRelation: pushdown filters: ArrayBuffer(EqualTo(clusterkey1,1), GreaterThan(clusterkey2,0), LessThan(clusterkey2,10))
First predicate not EQ:
df.filter("clusterkey1 > 1 AND clusterkey2 > 1").show()
INFO 2015-08-26 00:55:01 org.apache.spark.sql.cassandra.CassandraSourceRelation: filters: GreaterThan(clusterkey1,1), GreaterThan(clusterkey2,1)
INFO 2015-08-26 00:55:01 org.apache.spark.sql.cassandra.CassandraSourceRelation: pushdown filters: ArrayBuffer(GreaterThan(clusterkey1,1))
clusterkey2
EQ predicate:
df.filter("clusterkey1 = 1 AND clusterkey2 = 1 AND clusterkey2 < 10").show()
INFO 2015-08-26 00:56:37 org.apache.spark.sql.cassandra.CassandraSourceRelation: filters: EqualTo(clusterkey1,1), EqualTo(clusterkey2,1), LessThan(clusterkey2,10)
INFO 2015-08-26 00:56:37 org.apache.spark.sql.cassandra.CassandraSourceRelation: pushdown filters: ArrayBuffer(EqualTo(clusterkey1,1), EqualTo(clusterkey2,1))