diff --git a/R/classicProcess.R b/R/classicProcess.R index 8f9211d..7886618 100644 --- a/R/classicProcess.R +++ b/R/classicProcess.R @@ -349,12 +349,6 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { return(varNames) } -.procCheckRegListVars <- function(vars) { - # Check if vector of var names contains encoded X, W, Z, or M (not Y!!) - encoding <- .procVarEncoding() - return(!any(c(encoding[["X"]], encoding[["W"]], encoding[["Z"]]) %in% vars) && !any(grepl(encoding[["M"]], vars))) -} - .procReplaceDummyVars <- function(vars, modelOptions, globalDependent) { # Get encoding encoding <- .procVarEncoding() @@ -866,11 +860,17 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { } # Results functions ---- +.procCheckFitModelVars <- function(vars) { + # Check if vector of var names contains encoded X, W, Z, or M (not Y!!) + encoding <- .procVarEncoding() + return(!any(unlist(encoding) %in% vars) && !any(grepl(encoding[["M"]], vars))) +} + .procCheckFitModel <- function(graph) { if (inherits(graph, "try-error")) return(FALSE) - return(all(sapply(igraph::V(graph)$intVars, function(v) { - return(all(sapply(v, .procCheckRegListVars))) - }))) + allSourcesValid <- .procCheckFitModelVars(igraph::E(graph)$source) + allTargetsValid <- .procCheckFitModelVars(igraph::E(graph)$target) + return(allSourcesValid && allTargetsValid) } .procGraphAddEstimates <- function(graph, fittedModel, type = "effects") {