diff --git a/R/classicProcess.R b/R/classicProcess.R index 70cf104..c13a1e4 100644 --- a/R/classicProcess.R +++ b/R/classicProcess.R @@ -222,7 +222,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { # Which mediator index? medIdx <- stringr::str_extract(vars[isMed], "[0-9]") medIdx <- as.integer(medIdx[!is.na(medIdx)]) - + if (length(medIdx) > 0 && length(mediators) > 0) { for (i in 1:length(medIdx)) { if (length(mediators) >= medIdx[i]) { @@ -264,7 +264,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { # Replace dummy variables in dependent variables names(regList) <- encodeColNames(.procReplaceDummyVars(names(regList), modelOptions, globalDependent)) - + return(regList) } @@ -312,7 +312,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { modProbes <- lapply(names(modVars), function(nms) { matchFac <- sapply(options[["factors"]], grepl, x = nms) - + if (length(matchFac) > 0 && any(matchFac)) { whichFac <- options[["factors"]][matchFac] conMat <- contrasts[[whichFac]] @@ -324,7 +324,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { }) names(modProbes) <- names(modVars) - + return(modProbes) } @@ -387,7 +387,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { for (i in 1:length(regListA)) { if (length(regListA[[i]][["vars"]]) != length(regListB[[i]][["vars"]])) return(FALSE) - + if (regListA[[i]][["dep"]] != regListB[[i]][["dep"]]) return(FALSE) } @@ -400,7 +400,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { pathList <- lapply(1:length(regList), function(i) sapply(regList[[i]]$vars, function(v) c(v, names(regList)[i]))) - + # Convert path list to matrix paths <- matrix(unlist(pathList), ncol = 2, byrow = TRUE) @@ -484,7 +484,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { for (i in 1:length(options[["processModels"]])) { modelOptions <- options[["processModels"]][[i]] modelName <- modelOptions[["name"]] - + if (is.null(modelsContainer[[modelName]][["syntax"]])) { regList <- .procAddLavModParNamesSingleModel(modelsContainer[[modelName]][["regList"]]$object) modelsContainer[[modelName]][["regList"]]$object <- regList @@ -609,7 +609,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { regList <- .procAddLavModVar(regList, independent, processVariable) } } - + return(regList) } @@ -684,7 +684,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { # Get simple paths medPaths <- igraph::all_simple_paths(graph, from = exoVar, to = depVar, mode = "out") - + # Get par names of simple paths medEffectsList <- lapply(medPaths, .procMedEffectFromPath, regList = regList, modProbes = modProbes, contrasts = contrasts) @@ -733,10 +733,10 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { totEffect <- .pasteExpandGrid(medEffectsListCombined, collapse = " + ") totEffectNames <- .pasteExpandGrid(Filter(function(x) length(x) > 0, medEffectNamesListCombined), collapse = ".") - + # Get total indirect effect of X on Y totIndEffect <- .pasteExpandGrid(.doCallPaste(medEffectsListCombined[-1], sep = " + "), collapse = " + ") - + indEffectNames <- .pasteExpandGrid(Filter(function(x) length(x) > 0, medEffectNamesListCombined[-1]), collapse = ".") # Only select total effect if there are no indirect effects @@ -744,12 +744,12 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { totLabels <- "tot" } else { totLabels <- .pasteDot(rep("tot", length(totEffect)), totEffectNames) - } + } if (length(indEffectNames) == 0) { indLabels <- "totInd" } else { indLabels <- .pasteDot(rep("totInd", length(totIndEffect)), indEffectNames) - } + } totalEffectsSyntax <- paste( c(totLabels, indLabels), @@ -876,7 +876,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { # Replace dummy-coded variables in regList regList[[i]][["vars"]] <- colnames(pathDummyMat)[-1] } - + modelsContainer[[modelName]][["contrasts"]] <- createJaspState(contrastList) modelsContainer[[modelName]][["regList"]]$object <- regList } @@ -929,7 +929,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { if (options$errorCalculationMethod == "bootstrap") { medResult <- jaspSem:::lavBootstrap(fittedModel, options$bootstrapSamples) # FIXME } - + return(fittedModel) } @@ -991,7 +991,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { regLists <- lapply(options[["processModels"]], function(mod) modelsContainer[[mod[["name"]]]][["regList"]]$object) if (length(regLists) == 0) return() modelNumbers <- sapply(regLists, .procRecognizeModelNumber) - + modelNumberTable <- createJaspTable(title = gettext("Model numbers")) modelNumberTable$dependOn(c(.procGetDependencies(), "processModels")) modelNumberTable$position <- 0 @@ -1295,7 +1295,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { .procEffectsTablesGetConditionalLabels <- function(paths, mods) { modProbes <- list() - + for (path in paths) { pathMods <- sapply(path[-1], function(row) row[1]) @@ -1591,7 +1591,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { parTable <- lavaan::parTable(procResults) # Only include free parameters in DAG parTable <- parTable[parTable$op != ":=" & parTable$free > 0 & !grepl(":|__", parTable$rhs) & !grepl(":|__", parTable$lhs),] - + arrows <- apply(parTable, 1, function(row) { op <- switch(row[["op"]], "~" = " <- ", @@ -1610,8 +1610,8 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { conf.level = options$ciLevel, R = nReps ) - - if (nrow(localTestResult) > 0) { + + if (nrow(localTestResult) > 0) { implicationSplit <- strsplit(row.names(localTestResult), "\\s+(\\|+|_+\\|+_+)\\s+") localTestTable[["lhs"]] <- sapply(implicationSplit, function(row) names(parNamesAbbr)[parNamesAbbr == row[1]]) localTestTable[["op1"]] <- rep("\u2AEB", length(implicationSplit)) @@ -1871,7 +1871,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { # Create path matrix where first col is "from" and second col is "to", third col is estimate labelField <- ifelse(estimates, "est", "label") paths <- matrix(c(parTbl$rhs, parTbl$lhs, parTbl[[labelField]])[parTbl$op == "~"], ncol = 3) - + if (type == "conceptual") { # Remove nodes for factor levels and replace them by factor name, removing levels (e.g., factorLevel1 -> factor) paths[,1:2] <- apply(paths[, 1:2], 2, function(col) { @@ -1887,7 +1887,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { for (j in 1:length(v_split)) { # Check if variable name is a factor matchFac <- sapply(options[["factors"]], grepl, x = v_split[j]) - + # If it is replace by factor name otherwise keep original variable name if (length(matchFac) > 0 && any(matchFac)) { v_out[j] <- options[["factors"]][matchFac] @@ -1963,7 +1963,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { layout <- .procModGraphLayoutStatistical(intPathsSplitPruned, layout) } } - + # Create edge list from paths graph <- igraph::graph_from_edgelist(mainPaths[, 1:2, drop = FALSE]) @@ -2035,7 +2035,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { # Scale x-axis to 4/3 (x/y) ratio of y-axis to make plot wider layout[, 1] <- (layout[, 1]) * (max(layout[, 2]) - min(layout[, 2])) / (max(layout[, 1]) - min(layout[, 1])) - + p <- ggraph::ggraph( graph, layout = layout @@ -2067,7 +2067,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { # Make helper nodes transparent and hide color from legend ggplot2::scale_color_manual(values = c("black", "transparent"), guide = NULL) + ggplot2::scale_fill_manual(values = colorPalette, guide = NULL) - + if (options[["pathPlotsLegend"]]) { nodeLabelUnique <- unique(nodeLabels) nodeLabelUniqueSorted <- sort(nodeLabelUnique, index.return = TRUE) @@ -2083,7 +2083,7 @@ ClassicProcess <- function(jaspResults, dataset = NULL, options) { ) ) } - + p <- p + ggplot2::coord_fixed() + jaspGraphs::getEmptyTheme() +