From 09b01285df6f7358cde51d660788c4510259b53c Mon Sep 17 00:00:00 2001 From: JTPetter <61797391+JTPetter@users.noreply.github.com> Date: Fri, 19 Jul 2024 15:08:35 +0200 Subject: [PATCH] Fix bug in doe analysis with aliased squared terms --- R/doeAnalysis.R | 24 ++++++++++++++++++++++-- 1 file changed, 22 insertions(+), 2 deletions(-) diff --git a/R/doeAnalysis.R b/R/doeAnalysis.R index 2c1cb2ef..f5769c7a 100644 --- a/R/doeAnalysis.R +++ b/R/doeAnalysis.R @@ -123,6 +123,18 @@ doeAnalysis <- function(jaspResults, dataset, options, ...) { # dataset$A <- as.factor(dataset$A) # dataset$B <- as.factor(dataset$B) + + +# dataset <- read.csv("C:/Users/Jonee/Desktop/Temporary Files/318 DOE full step 2.csv") +# dataset <- dataset[c(4,5,6)] +# options <- list() +# discretePredictors <- "" +# continuousPredictors <- c("C", "F") +# blocks <- "" +# covariates <- "" +# dependent <- "Response" + + .doeAnalysisMakeState <- function(jaspResults, dataset, options, continuousPredictors, discretePredictors, blocks, covariates, dependent, ready) { if (!ready || jaspResults$getError()) { return() @@ -259,8 +271,14 @@ doeAnalysis <- function(jaspResults, dataset, options, ...) { allPredictors <- unlist(c(continuousPredictors, discretePredictors, blocks, covariates)) allPredictors <- allPredictors[allPredictors != ""] aliasedTerms <- .removeAppendedFactorLevels(predictorNames = allPredictors, terms = aliasedTerms, interactionSymbol = ":") - result[["regression"]][["aliasedTerms"]] <- gsubInteractionSymbol(aliasedTerms) # store for footnote - resultCoded[["regression"]][["aliasedTerms"]] <- gsubInteractionSymbol(aliasedTerms) # store for footnote + + # store for footnote + aliasedTermsFootnote <- aliasedTerms + aliasedTermsFootnote <- unname(sapply(aliasedTermsFootnote, .gsubIdentityFunction)) + aliasedTermsFootnote <- gsubInteractionSymbol(aliasedTermsFootnote) + result[["regression"]][["aliasedTerms"]] <- aliasedTermsFootnote + resultCoded[["regression"]][["aliasedTerms"]] <- aliasedTermsFootnote + formula <- as.formula(paste(paste(deparse(formula), collapse=""), paste(aliasedTerms, collapse="-"), sep="-")) # remove the aliased term(s) from the model # fit the model again regressionFit <- lm(formula, data = dataset) @@ -666,6 +684,8 @@ get_levels <- function(var, num_levels, dataset) { .removeAppendedFactorLevels <- function(predictorNames, terms, interactionSymbol = "✻"){ regexExpression <- paste0("(", paste(predictorNames, collapse = "|"), ")((\\^2)?)([^", interactionSymbol, "]+)(", interactionSymbol, "?)") for (term_i in seq_along(terms)) { + if (grepl("I\\(", terms[term_i])) # if wrapped in identify function, don't do anything, as it will be a squared term and have no appended factor level + next() replacements <- if (grepl("^2", terms[term_i], fixed = TRUE)) "\\1\\4" else "\\1\\5" terms[term_i] <- gsub(regexExpression, replacements, terms[term_i], perl=TRUE) terms[term_i] <- gsub("\\s", "", terms[term_i])