From 8c4de1bfc138ec10d853ee4b3f1f6e6b21801d08 Mon Sep 17 00:00:00 2001 From: JTPetter <61797391+JTPetter@users.noreply.github.com> Date: Tue, 14 May 2024 15:12:54 +0200 Subject: [PATCH] remove new function code --- R/doeAnalysis.R | 108 ------------------------------------------------ 1 file changed, 108 deletions(-) diff --git a/R/doeAnalysis.R b/R/doeAnalysis.R index e67ec83b..657861c4 100644 --- a/R/doeAnalysis.R +++ b/R/doeAnalysis.R @@ -833,114 +833,6 @@ get_levels <- function(var, num_levels, dataset) { plot$plotObject <- p } -# .doeAnalysisPlotEffectNormalDistribution <- function(jaspResults, options, blocks, covariates, ready) { -# if (!is.null(jaspResults[["normalEffectsPlot"]]) || !options[["normalEffectsPlot"]]) { -# return() -# } -# plot <- createJaspPlot(title = gettext("Normal Plot of Standardized Effects"), width = 600, height = 400) -# plot$dependOn(options = c("normalEffectsPlot", "tableAlias", .doeAnalysisBaseDependencies())) -# plot$position <- 11 -# jaspResults[["normalEffectsPlot"]] <- plot -# if (!ready || is.null(jaspResults[["doeResult"]]) || jaspResults$getError()) { -# return() -# } -# result <- if (options[["codeFactors"]]) jaspResults[["doeResultCoded"]]$object[["regression"]] else jaspResults[["doeResult"]]$object[["regression"]] -# fac <- if (options[["tableAlias"]]) result[["coefficients"]][["termsAliased"]][-1] else result[["coefficients"]][["terms"]][-1] -# coefDf <- data.frame(result[["objectSummary"]]$coefficients) -# tDf <- data.frame("tValue" = coefDf[["t.value"]], -# terms = result[["coefficients"]][["terms"]]) -# -# # Do not include intercept, covariates and blocks in normal effects plot -# tDf <- tDf[-1, ] # remove intercept -# if (length(blocks) > 0 && !identical(blocks, "")) { -# tDf <- tDf[!grepl(blocks, tDf$terms),] -# fac <- if (options[["tableAlias"]]) fac[!grepl("BLK", fac)] else fac[!grepl(blocks, fac)] -# } -# if (length(covariates) > 0 && !identical(covariates, "")) { -# tDf <- tDf[!tDf$terms %in% unlist(covariates), ] # remove the covariate(s) -# fac <- if (options[["tableAlias"]]) fac[!grepl("COV", fac)] else fac[!fac %in% unlist(covariates)] -# } -# -# -# #library(ggplot2) -# data <- c(1.79, -0.52, 3.08, 0.9, -0.79, -1.58) -# x <- data -# -# -# ticks <- ticks -# -# x <- x[order(x)] -# n <- length(x) -# i <- rank(x) -# p <- (i - 0.3) / (n + 0.4) -# -# -# df <- data.frame(x = x, p = p) -# # Create the ggplot with probit transformation -# ggplot(df, aes(x = x, y = p)) + -# stat_function(fun = pnorm, colour = "blue", size = 1) + # Reference line using the pnorm function -# geom_point(color = "red", size = 3) + -# scale_y_continuous(trans = 'probit', labels = scales::percent_format(accuracy = 1), breaks = ticks) + -# labs(x = "Value", y = "Probit of Percentile", -# title = "Comparison of Data to Standard Normal Distribution Percentiles") + -# theme_minimal() + -# xlim(-3, 3.5) # Optional: adjust the x-limits to show more of the tails if needed -# -# -# -# -# c(0.1, 1, 5, seq(10, 90, 10), 95, 99, 99.9) -# tDf -# -# theoretical_fit <- qnorm((1:nrow(tDf))/(nrow(tDf)+1)) -# tDf <- dplyr::arrange(tDf, tValue) -# -# # Plotting using ggplot2 -# ggplot2::ggplot(tDf, ggplot2::aes(sample = tValue)) + -# #ggplot2::geom_point(ggplot2::aes(y = prob), color = "blue") + # plot actual data points with their percentiles -# ggplot2::geom_line(ggplot2::aes(x = theoretical_fit, y = sort(tValue)), color = "red") + # add theoretical fit line -# ggplot2::labs(title = "Normal Probability Plot of the Effects", -# x = "Theoretical Quantiles", -# y = "Percentiles") + -# ggplot2::theme_minimal() + -# ggplot2::scale_y_continuous(labels = scales::percent) # format y-axis as percent -# -# tDf$percentile <- pnorm(tDf$tValue) * 100 -# # Plotting -# ggplot(tDf, aes(x = tValue)) + -# geom_point(aes(y = percentile), color = "blue") + # Actual data points -# geom_line(data = data.frame(t = sort(tDf$tValue)), aes(x = t, y = pnorm(t) * 100), color = "red") + # Theoretical fit line -# labs(title = "Normal Probability Plot of the Effects", -# x = "T-Values", -# y = "Percentiles") + -# theme_minimal() + -# scale_y_continuous(limits = c(0, 100)) + -# scale_x_continuous(limits = c(-3, 3))# y-axis as percent -# -# -# -# -# -# -# df <- result[["objectSummary"]]$df[2] -# crit <- abs(qt(0.025, df)) -# fac_t <- cbind.data.frame(fac, t) -# fac_t <- cbind(fac_t[order(fac_t$t), ], y = seq_len(length(t))) -# xBreaks <- jaspGraphs::getPrettyAxisBreaks(c(0, t, crit)) -# critLabelDf <- data.frame(x = 0, y = crit, label = sprintf("t = %.2f", crit)) -# p <- ggplot2::ggplot(data = fac_t, mapping = ggplot2::aes(y = t, x = y)) + -# ggplot2::geom_bar(stat = "identity") + -# ggplot2::geom_hline(yintercept = crit, linetype = "dashed", color = "red") + -# ggplot2::geom_label(data = critLabelDf, mapping = ggplot2::aes(x = x, y = y, label = label), col = "red", size = 5) + -# ggplot2::scale_x_continuous(name = gettext("Term"), breaks = fac_t$y, labels = fac_t$fac) + -# ggplot2::scale_y_continuous(name = -# gettext("Standardized Effect"), breaks = xBreaks, limits = range(xBreaks)) + -# ggplot2::coord_flip() + -# jaspGraphs::geom_rangeframe() + -# jaspGraphs::themeJaspRaw() -# plot$plotObject <- p -# } - .doeAnalysisPlotQQResiduals <- function(jaspResults, options, ready) { if (!is.null(jaspResults[["plotNorm"]]) || !options[["plotNorm"]]) { return()