diff --git a/R/regressionlinear.R b/R/regressionlinear.R index f7e8ae41..9aeffa6b 100755 --- a/R/regressionlinear.R +++ b/R/regressionlinear.R @@ -225,7 +225,10 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { summaryTable$addFootnote(message = gettext("p-value for Durbin-Watson test is unavailable for weighted regression.")) } - .linregAddPredictorsInNullFootnote(summaryTable, options$modelTerms[[1]][["components"]]) + if (options[["method"]] == "enter") { + for (i in seq_along(options$modelTerms)) + .linregAddPredictorsInModelFootnote(summaryTable, options[["modelTerms"]][[i]][["components"]], i) + } if (!is.null(model)) { if (length(model) == 1 && length(model[[1]]$predictors) == 0 && !options$interceptTerm) @@ -277,7 +280,11 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { anovaTable$addColumnInfo(name = "F", title = gettext("F"), type = "number") anovaTable$addColumnInfo(name = "p", title = gettext("p"), type = "pvalue") - .linregAddPredictorsInNullFootnote(anovaTable, options$modelTerms[[1]][["components"]]) + if (options[["method"]] == "enter") { + for (i in seq_along(options$modelTerms)) + .linregAddPredictorsInModelFootnote(anovaTable, options[["modelTerms"]][[i]][["components"]], i) + } + .linregAddVovkSellke(anovaTable, options$vovkSellke) if (!is.null(model)) { @@ -793,8 +800,8 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { nModels <- length(options$modelTerms) dependent <- options$dependent - predictorsInNull <- .linregGetPredictors(options$modelTerms[[1]][["components"]], modelType = "null") - predictorsInFull <- .linregGetPredictors(options$modelTerms[[nModels]][["components"]], modelType = "alternative") # these include the null terms + predictorsInNull <- .linregGetPredictors(options$modelTerms[[1]][["components"]]) + predictorsInFull <- .linregGetPredictors(options$modelTerms[[nModels]][["components"]]) # these include the null terms if (options$weights != "") @@ -809,7 +816,8 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { for (i in seq_along(model)) { singleModel <- model[[i]] - model[[i]][["title"]] <- gettextf("M%s", intToUtf8(0x2080 + i - 1, multiple = FALSE)) # singleModel[["title"]] + modNum <- singleModel[["number"]] + model[[i]][["title"]] <- gettextf("M%s", intToUtf8(0x2080 + modNum - 1, multiple = FALSE)) # singleModel[["title"]] model[[i]][["summary"]] <- .linregGetSummary(singleModel$fit) model[[i]][["rSquareChange"]] <- .linregGetrSquaredChange(singleModel$fit, i, model[1:i], options) } @@ -845,19 +853,23 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { model <- .linregForwardRegression(dependent, predictors, predictorsInNull, dataset, options, weights) else # stepwise model <- .linregStepwiseRegression(dependent, predictors, predictorsInNull, dataset, options, weights) - + + for (i in seq_along(model)) + model[[i]] <- c(model[[i]], number = i) + return(model) } .linregGetModelEnterMethod <- function(dependent, modelTerms, dataset, options, weights) { model <- list() - for (thisModel in modelTerms) { - thisModelTerms <- .linregGetPredictors(thisModel[["components"]]) + for (i in seq_along(modelTerms)) { + thisModelTerms <- .linregGetPredictors(modelTerms[[i]][["components"]]) formula <- .linregGetFormula(dependent, thisModelTerms, options$interceptTerm) - fit <- stats::lm(formula, data = dataset, weights = weights, x = TRUE) - model[[length(model) + 1]] <- list(fit = fit, predictors = thisModelTerms, title = gettext(thisModel[["title"]])) - + if (!is.null(formula)) { + fit <- stats::lm(formula, data = dataset, weights = weights, x = TRUE) + model[[length(model) + 1]] <- list(fit = fit, predictors = thisModelTerms, number = i) + } } return(model) @@ -1726,9 +1738,7 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { return(p) } -.linregGetPredictors <- function(modelTerms, modelType = "alternative") { - if (!is.character(modelType) || !modelType %in% c("alternative", "null")) - stop(gettext("Unknown value provided for modelType, possible values: `alternative`, `null`")) +.linregGetPredictors <- function(modelTerms) { predictors <- NULL for (i in seq_along(modelTerms)) { @@ -1755,7 +1765,8 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { .linregGetFormula <- function(dependent, predictors = NULL, includeConstant) { if (is.null(predictors) && includeConstant == FALSE) - stop(gettext("We need at least one predictor, or an intercept to make a formula")) + return(NULL) + # stop(gettext("We need at least one predictor, or an intercept to make a formula")) if (length(predictors) == 0) formula <- paste(dependent, "~", "1") @@ -1811,10 +1822,11 @@ RegressionLinearInternal <- function(jaspResults, dataset = NULL, options) { } -.linregAddPredictorsInNullFootnote <- function(jaspTable, modelTerms) { +.linregAddPredictorsInModelFootnote <- function(jaspTable, modelTerms, modelIndex) { if (length(modelTerms) > 0) { - predictorsInNull <- .linregGetPredictors(modelTerms, modelType = "null") - jaspTable$addFootnote(message = gettextf("Null model includes %s", paste(predictorsInNull, collapse = ", "), sep = "")) + predictorsInModel <- .linregGetPredictors(modelTerms) + modelName <- gettextf("M%s", intToUtf8(0x2080 + modelIndex - 1, multiple = FALSE)) + jaspTable$addFootnote(message = gettextf("%1$s includes %2$s", modelName, paste0(predictorsInModel, collapse = ", "))) } }