forked from ZachNagengast/chatgpt-retrieval-plugin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchunks.py
202 lines (154 loc) · 7.4 KB
/
chunks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from typing import Dict, List, Optional, Tuple
import uuid
from models.models import Document, DocumentChunk, DocumentChunkMetadata
import tiktoken
from services.openai import get_embeddings
# Global variables
tokenizer = tiktoken.get_encoding(
"cl100k_base"
) # The encoding scheme to use for tokenization
# Constants
CHUNK_SIZE = 200 # The target size of each text chunk in tokens
MIN_CHUNK_SIZE_CHARS = 350 # The minimum size of each text chunk in characters
MIN_CHUNK_LENGTH_TO_EMBED = 5 # Discard chunks shorter than this
EMBEDDINGS_BATCH_SIZE = 128 # The number of embeddings to request at a time
MAX_NUM_CHUNKS = 10000 # The maximum number of chunks to generate from a text
def get_text_chunks(text: str, chunk_token_size: Optional[int]) -> List[str]:
"""
Split a text into chunks of ~CHUNK_SIZE tokens, based on punctuation and newline boundaries.
Args:
text: The text to split into chunks.
chunk_token_size: The target size of each chunk in tokens, or None to use the default CHUNK_SIZE.
Returns:
A list of text chunks, each of which is a string of ~CHUNK_SIZE tokens.
"""
# Return an empty list if the text is empty or whitespace
if not text or text.isspace():
return []
# Tokenize the text
tokens = tokenizer.encode(text, disallowed_special=())
# Initialize an empty list of chunks
chunks = []
# Use the provided chunk token size or the default one
chunk_size = chunk_token_size or CHUNK_SIZE
# Initialize a counter for the number of chunks
num_chunks = 0
# Loop until all tokens are consumed
while tokens and num_chunks < MAX_NUM_CHUNKS:
# Take the first chunk_size tokens as a chunk
chunk = tokens[:chunk_size]
# Decode the chunk into text
chunk_text = tokenizer.decode(chunk)
# Skip the chunk if it is empty or whitespace
if not chunk_text or chunk_text.isspace():
# Remove the tokens corresponding to the chunk text from the remaining tokens
tokens = tokens[len(chunk) :]
# Continue to the next iteration of the loop
continue
# Find the last period or punctuation mark in the chunk
last_punctuation = max(
chunk_text.rfind("."),
chunk_text.rfind("?"),
chunk_text.rfind("!"),
chunk_text.rfind("\n"),
)
# If there is a punctuation mark, and the last punctuation index is before MIN_CHUNK_SIZE_CHARS
if last_punctuation != -1 and last_punctuation > MIN_CHUNK_SIZE_CHARS:
# Truncate the chunk text at the punctuation mark
chunk_text = chunk_text[: last_punctuation + 1]
# Remove any newline characters and strip any leading or trailing whitespace
chunk_text_to_append = chunk_text.replace("\n", " ").strip()
if len(chunk_text_to_append) > MIN_CHUNK_LENGTH_TO_EMBED:
# Append the chunk text to the list of chunks
chunks.append(chunk_text_to_append)
# Remove the tokens corresponding to the chunk text from the remaining tokens
tokens = tokens[len(tokenizer.encode(chunk_text, disallowed_special=())) :]
# Increment the number of chunks
num_chunks += 1
# Handle the remaining tokens
if tokens:
remaining_text = tokenizer.decode(tokens).replace("\n", " ").strip()
if len(remaining_text) > MIN_CHUNK_LENGTH_TO_EMBED:
chunks.append(remaining_text)
return chunks
def create_document_chunks(
doc: Document, chunk_token_size: Optional[int]
) -> Tuple[List[DocumentChunk], str]:
"""
Create a list of document chunks from a document object and return the document id.
Args:
doc: The document object to create chunks from. It should have a text attribute and optionally an id and a metadata attribute.
chunk_token_size: The target size of each chunk in tokens, or None to use the default CHUNK_SIZE.
Returns:
A tuple of (doc_chunks, doc_id), where doc_chunks is a list of document chunks, each of which is a DocumentChunk object with an id, a document_id, a text, and a metadata attribute,
and doc_id is the id of the document object, generated if not provided. The id of each chunk is generated from the document id and a sequential number, and the metadata is copied from the document object.
"""
# Check if the document text is empty or whitespace
if not doc.text or doc.text.isspace():
return [], doc.id or str(uuid.uuid4())
# Generate a document id if not provided
doc_id = doc.id or str(uuid.uuid4())
# Split the document text into chunks
text_chunks = get_text_chunks(doc.text, chunk_token_size)
metadata = (
DocumentChunkMetadata(**doc.metadata.__dict__)
if doc.metadata is not None
else DocumentChunkMetadata()
)
metadata.document_id = doc_id
# Initialize an empty list of chunks for this document
doc_chunks = []
# Assign each chunk a sequential number and create a DocumentChunk object
for i, text_chunk in enumerate(text_chunks):
chunk_id = f"{doc_id}_{i}"
doc_chunk = DocumentChunk(
id=chunk_id,
text=text_chunk,
metadata=metadata,
)
# Append the chunk object to the list of chunks for this document
doc_chunks.append(doc_chunk)
# Return the list of chunks and the document id
return doc_chunks, doc_id
def get_document_chunks(
documents: List[Document], chunk_token_size: Optional[int]
) -> Dict[str, List[DocumentChunk]]:
"""
Convert a list of documents into a dictionary from document id to list of document chunks.
Args:
documents: The list of documents to convert.
chunk_token_size: The target size of each chunk in tokens, or None to use the default CHUNK_SIZE.
Returns:
A dictionary mapping each document id to a list of document chunks, each of which is a DocumentChunk object
with text, metadata, and embedding attributes.
"""
# Initialize an empty dictionary of lists of chunks
chunks: Dict[str, List[DocumentChunk]] = {}
# Initialize an empty list of all chunks
all_chunks: List[DocumentChunk] = []
# Loop over each document and create chunks
for doc in documents:
doc_chunks, doc_id = create_document_chunks(doc, chunk_token_size)
# Append the chunks for this document to the list of all chunks
all_chunks.extend(doc_chunks)
# Add the list of chunks for this document to the dictionary with the document id as the key
chunks[doc_id] = doc_chunks
# Check if there are no chunks
if not all_chunks:
return {}
# Get all the embeddings for the document chunks in batches, using get_embeddings
embeddings: List[List[float]] = []
for i in range(0, len(all_chunks), EMBEDDINGS_BATCH_SIZE):
# Get the text of the chunks in the current batch
batch_texts = [
chunk.text for chunk in all_chunks[i : i + EMBEDDINGS_BATCH_SIZE]
]
# Get the embeddings for the batch texts
batch_embeddings = get_embeddings(batch_texts)
# Append the batch embeddings to the embeddings list
embeddings.extend(batch_embeddings)
# Update the document chunk objects with the embeddings
for i, chunk in enumerate(all_chunks):
# Assign the embedding from the embeddings list to the chunk object
chunk.embedding = embeddings[i]
return chunks