-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIntervalTree.java
343 lines (315 loc) · 9.43 KB
/
IntervalTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
package structures;
import java.util.ArrayList;
/**
* Encapsulates an interval tree.
*
* @author runb-cs112
*/
public class IntervalTree {
/**
* The root of the interval tree
*/
IntervalTreeNode root;
/**
* Constructs entire interval tree from set of input intervals. Constructing the tree
* means building the interval tree structure and mapping the intervals to the nodes.
*
* @param intervals Array list of intervals for which the tree is constructed
*/
public IntervalTree(ArrayList<Interval> intervals) {
// make a copy of intervals to use for right sorting
ArrayList<Interval> intervalsRight = new ArrayList<Interval>(intervals.size());
for (Interval iv : intervals) {
intervalsRight.add(iv);
}
// rename input intervals for left sorting
ArrayList<Interval> intervalsLeft = intervals;
// sort intervals on left and right end points
sortIntervals(intervalsLeft, 'l');
sortIntervals(intervalsRight,'r');
// get sorted list of end points without duplicates
ArrayList<Integer> sortedEndPoints =
getSortedEndPoints(intervalsLeft, intervalsRight);
// build the tree nodes
root = buildTreeNodes(sortedEndPoints);
// map intervals to the tree nodes
mapIntervalsToTree(intervalsLeft, intervalsRight);
}
/**
* Returns the root of this interval tree.
*
* @return Root of interval tree.
*/
public IntervalTreeNode getRoot() {
return root;
}
/**
* Sorts a set of intervals in place, according to left or right endpoints.
* At the end of the method, the parameter array list is a sorted list.
*
* @param intervals Array list of intervals to be sorted.
* @param lr If 'l', then sort is on left endpoints; if 'r', sort is on right endpoints
*/
public static void sortIntervals(ArrayList<Interval> intervals, char lr) {
// COMPLETE THIS METHOD
if (lr == 'l')
{
for (int i = 0; i < intervals.size(); i++)
{
int tiny = intervals.get(i).leftEndPoint;
int index = i;
for (int j = i+1; j < intervals.size(); j++)
{
if (intervals.get(j).leftEndPoint < tiny)
{
tiny = intervals.get(j).leftEndPoint;
index = j;
}
}
Interval current = intervals.remove(index);
intervals.add(i, current);
}
}
//i got lost in the sauce
if (lr == 'r')
{
for (int i = 0; i < intervals.size(); i++)
{
int tiny = intervals.get(i).rightEndPoint;
int index = i;
for (int j = i+1; j < intervals.size(); j++)
{
if (intervals.get(j).rightEndPoint < tiny)
{
tiny = intervals.get(j).rightEndPoint;
index = j;
}
}
Interval temp = intervals.remove(index);
intervals.add(i, temp);
}
}
}
/**
* Given a set of intervals (left sorted and right sorted), extracts the left and right end points,
* and returns a sorted list of the combined end points without duplicates.
*
* @param leftSortedIntervals Array list of intervals sorted according to left endpoints
* @param rightSortedIntervals Array list of intervals sorted according to right endpoints
* @return Sorted array list of all endpoints without duplicates
*/
public static ArrayList<Integer> getSortedEndPoints(ArrayList<Interval> leftSortedIntervals, ArrayList<Interval> rightSortedIntervals) {
// COMPLETE THIS METHOD
ArrayList<Integer> leftist = new ArrayList<Integer>();
ArrayList<Integer> result = new ArrayList<Integer>();
for (Interval i : leftSortedIntervals)
leftist.add(i.leftEndPoint);
int windex = 0;
while (leftist.size() > 0)
{
//System.out.println("bl");
if (rightSortedIntervals.size() > windex)
{
Interval i = rightSortedIntervals.get(windex);
if (leftist.size() != 0) {
if (i.rightEndPoint < leftist.get(0))
{
if (result.size() == 0)
result.add(i.rightEndPoint);
else if(result.get(result.size()-1) != i.rightEndPoint)
{
result.add(i.rightEndPoint);
//System.out.println("bla");
}
}
else if (i.rightEndPoint > leftist.get(0))
{
if (result.size() == 0)
{
result.add(leftist.get(0));
}
else if(result.get(result.size()-1) != leftist.get(0))
{
result.add(leftist.get(0));
}
leftist.remove(0);
}
else
{
if (result.size() == 0)
result.add(i.rightEndPoint);
else if(result.get(result.size()-1) != i.rightEndPoint)
{
result.add(i.rightEndPoint);
leftist.remove(0);
}
}
}
}
else
{
if (result.size() == 0)
result.add(leftist.get(0));
else if (result.get(result.size()-1) != leftist.get(0))
{
result.add(leftist.get(0));
}
leftist.remove(0);
}
windex++;
}
for (int i = windex; i < rightSortedIntervals.size(); i++)
{
if (result.size() == 0)
result.add(rightSortedIntervals.get(i).rightEndPoint);
else if (rightSortedIntervals.get(i).rightEndPoint != result.get(result.size()-1))
result.add(rightSortedIntervals.get(i).rightEndPoint);
}
// THE FOLLOWING LINE HAS BEEN ADDED TO MAKE THE PROGRAM COMPILE
//System.out.println(leftSortedIntervals +" " + rightSortedIntervals);
return result;
}
/**
* Builds the interval tree structure given a sorted array list of end points
* without duplicates.
*
* @param endPoints Sorted array list of end points
* @return Root of the tree structure
*/
public static IntervalTreeNode buildTreeNodes(ArrayList<Integer> endPoints) {
// COMPLETE THIS METHOD
Queue<IntervalTreeNode> q = new Queue<IntervalTreeNode>();
//super loop it might work it might not
for (int x : endPoints)
{
IntervalTreeNode squats = new IntervalTreeNode(x,x,x);
squats.leftIntervals = new ArrayList<Interval>();
squats.rightIntervals = new ArrayList<Interval>();
q.enqueue(squats);
}
while (q.size() > 1)
{
int temp = q.size();
while (temp > 1)
{
IntervalTreeNode t1 = q.dequeue();
IntervalTreeNode t2 = q.dequeue();
IntervalTreeNode t3 = new IntervalTreeNode((t1.minSplitValue+t2.maxSplitValue)/2, t1.minSplitValue, t2.maxSplitValue);
t3.leftIntervals = new ArrayList<Interval>();
t3.rightIntervals = new ArrayList<Interval>();
t3.leftChild = t1;
t3.rightChild = t2;
q.enqueue(t3);
temp-=2;
//System.out.println("b");
}
if (temp == 1)
q.enqueue(q.dequeue());
}
// THE FOLLOWING LINE HAS BEEN ADDED TO MAKE THE PROGRAM COMPILE
return q.dequeue();
}
/**
* Maps a set of intervals to the nodes of this interval tree.
*
* @param leftSortedIntervals Array list of intervals sorted according to left endpoints
* @param rightSortedIntervals Array list of intervals sorted according to right endpoints
*/
public void mapIntervalsToTree(ArrayList<Interval> leftSortedIntervals, ArrayList<Interval> rightSortedIntervals) {
// COMPLETE THIS METHOD
IntervalTreeNode temp = root;
for (Interval x : leftSortedIntervals)
{
while (temp != null)
{
if (temp.splitValue >= x.leftEndPoint || temp.splitValue <= x.rightEndPoint)
{
temp.leftIntervals.add(x);
break;
}
else if (temp.splitValue > x.rightEndPoint)
temp = temp.leftChild;
else
temp = temp.rightChild;
}
}
for (Interval x : rightSortedIntervals)
{
while (temp != null)
{
if (temp.splitValue >= x.leftEndPoint || temp.splitValue <= x.rightEndPoint)
{
temp.rightIntervals.add(x);
break;
}
else if (temp.splitValue > x.rightEndPoint)
temp = temp.leftChild;
else
temp = temp.rightChild;
}
}
}
/**
* Gets all intervals in this interval tree that intersect with a given interval.
*
* @param q The query interval for which intersections are to be found
* @return Array list of all intersecting intervals; size is 0 if there are no intersections
*/
public ArrayList<Interval> findIntersectingIntervals(Interval q) {
// COMPLETE THIS METHOD
ArrayList<Interval> resultlist = new ArrayList<Interval>();
if (root == null)
return resultlist;
// THE FOLLOWING LINE HAS BEEN ADDED TO MAKE THE PROGRAM COMPILE
return quarry(q,root,resultlist);
}
private ArrayList<Interval> quarry(Interval q, IntervalTreeNode t, ArrayList<Interval> resultlist)
{
if (t == null){
return resultlist;
//base case
}
if (t.splitValue >= q.leftEndPoint && t.splitValue <= q.rightEndPoint)
{
//System.out.println(t.leftIntervals);
ArrayList<Interval>menace= new ArrayList<Interval>();
menace=t.leftIntervals;
for(int x = 0;x<menace.size();x++){
Interval sauce = menace.get(x);
if(sauce.rightEndPoint < q.leftEndPoint){
menace.remove(x);
}
if(sauce.leftEndPoint > q.rightEndPoint){
menace.remove(x);
}
}
resultlist.addAll(menace);
quarry(q,t.leftChild, resultlist);
quarry(q, t.rightChild, resultlist);
}
else if (t.splitValue < q.leftEndPoint)
{
for (int i = t.rightIntervals.size()-1; i >= 0; i--)
{
if (q.rightEndPoint >= t.rightIntervals.get(i).leftEndPoint)
if(t.rightIntervals.get(i).rightEndPoint< q.leftEndPoint){
}else if (t.rightIntervals.get(i).leftEndPoint > q.rightEndPoint){
}else{
resultlist.add(t.rightIntervals.get(i));
}
}
quarry(q, t.rightChild, resultlist);
}
else if (t.splitValue > q.rightEndPoint)
{
for (int i = 0; i < t.leftIntervals.size(); i++)
{
if (q.leftEndPoint <= t.leftIntervals.get(i).rightEndPoint)
resultlist.add(t.leftIntervals.get(i));
}
quarry(q, t.leftChild, resultlist);
}
return resultlist;
//so the problem is that it currs thoru all instead of just the intersectin
}
}