-
Notifications
You must be signed in to change notification settings - Fork 424
/
Copy pathgpt2.py
121 lines (75 loc) · 4.15 KB
/
gpt2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
def gelu(x):
return 0.5 * x * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * x**3)))
def softmax(x):
exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
return exp_x / np.sum(exp_x, axis=-1, keepdims=True)
def layer_norm(x, g, b, eps: float = 1e-5):
mean = np.mean(x, axis=-1, keepdims=True)
variance = np.var(x, axis=-1, keepdims=True)
x = (x - mean) / np.sqrt(variance + eps) # normalize x to have mean=0 and var=1 over last axis
return g * x + b # scale and offset with gamma/beta params
def linear(x, w, b): # [m, in], [in, out], [out] -> [m, out]
return x @ w + b
def ffn(x, c_fc, c_proj): # [n_seq, n_embd] -> [n_seq, n_embd]
# project up
a = gelu(linear(x, **c_fc)) # [n_seq, n_embd] -> [n_seq, 4*n_embd]
# project back down
x = linear(a, **c_proj) # [n_seq, 4*n_embd] -> [n_seq, n_embd]
return x
def attention(q, k, v, mask): # [n_q, d_k], [n_k, d_k], [n_k, d_v], [n_q, n_k] -> [n_q, d_v]
return softmax(q @ k.T / np.sqrt(q.shape[-1]) + mask) @ v
def mha(x, c_attn, c_proj, n_head): # [n_seq, n_embd] -> [n_seq, n_embd]
# qkv projection
x = linear(x, **c_attn) # [n_seq, n_embd] -> [n_seq, 3*n_embd]
# split into qkv
qkv = np.split(x, 3, axis=-1) # [n_seq, 3*n_embd] -> [3, n_seq, n_embd]
# split into heads
qkv_heads = list(map(lambda x: np.split(x, n_head, axis=-1), qkv)) # [3, n_seq, n_embd] -> [3, n_head, n_seq, n_embd/n_head]
# causal mask to hide future inputs from being attended to
causal_mask = (1 - np.tri(x.shape[0], dtype=x.dtype)) * -1e10 # [n_seq, n_seq]
# perform attention over each head
out_heads = [attention(q, k, v, causal_mask) for q, k, v in zip(*qkv_heads)] # [3, n_head, n_seq, n_embd/n_head] -> [n_head, n_seq, n_embd/n_head]
# merge heads
x = np.hstack(out_heads) # [n_head, n_seq, n_embd/n_head] -> [n_seq, n_embd]
# out projection
x = linear(x, **c_proj) # [n_seq, n_embd] -> [n_seq, n_embd]
return x
def transformer_block(x, mlp, attn, ln_1, ln_2, n_head): # [n_seq, n_embd] -> [n_seq, n_embd]
# multi-head causal self attention
x = x + mha(layer_norm(x, **ln_1), **attn, n_head=n_head) # [n_seq, n_embd] -> [n_seq, n_embd]
# position-wise feed forward network
x = x + ffn(layer_norm(x, **ln_2), **mlp) # [n_seq, n_embd] -> [n_seq, n_embd]
return x
def gpt2(inputs, wte, wpe, blocks, ln_f, n_head): # [n_seq] -> [n_seq, n_vocab]
# token + positional embeddings
x = wte[inputs] + wpe[range(len(inputs))] # [n_seq] -> [n_seq, n_embd]
# forward pass through n_layer transformer blocks
for block in blocks:
x = transformer_block(x, **block, n_head=n_head) # [n_seq, n_embd] -> [n_seq, n_embd]
# projection to vocab
x = layer_norm(x, **ln_f) # [n_seq, n_embd] -> [n_seq, n_embd]
return x @ wte.T # [n_seq, n_embd] -> [n_seq, n_vocab]
def generate(inputs, params, n_head, n_tokens_to_generate):
from tqdm import tqdm
for _ in tqdm(range(n_tokens_to_generate), "generating"): # auto-regressive decode loop
logits = gpt2(inputs, **params, n_head=n_head) # model forward pass
next_id = np.argmax(logits[-1]) # greedy sampling
inputs.append(int(next_id)) # append prediction to input
return inputs[len(inputs) - n_tokens_to_generate :] # only return generated ids
def main(prompt: str, n_tokens_to_generate: int = 40, model_size: str = "124M", models_dir: str = "models"):
from utils import load_encoder_hparams_and_params
# load encoder, hparams, and params from the released open-ai gpt-2 files
encoder, hparams, params = load_encoder_hparams_and_params(model_size, models_dir)
# encode the input string using the BPE tokenizer
input_ids = encoder.encode(prompt)
# make sure we are not surpassing the max sequence length of our model
assert len(input_ids) + n_tokens_to_generate < hparams["n_ctx"]
# generate output ids
output_ids = generate(input_ids, params, hparams["n_head"], n_tokens_to_generate)
# decode the ids back into a string
output_text = encoder.decode(output_ids)
return output_text
if __name__ == "__main__":
import fire
fire.Fire(main)