forked from KevinCoble/AIToolbox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DataSet.swift
503 lines (442 loc) · 17.3 KB
/
DataSet.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
//
// DataSet.swift
// AIToolbox
//
// Created by Kevin Coble on 12/6/15.
// Copyright © 2015 Kevin Coble. All rights reserved.
//
import Foundation
enum DataTypeError: Error {
case invalidDataType
case dataWrongForType
case wrongDimensionOnInput
case wrongDimensionOnOutput
}
enum DataIndexError: Error {
case negative
case indexAboveDimension
case indexAboveDataSetSize
}
open class DataSet : MLRegressionDataSet, MLClassificationDataSet, MLCombinedDataSet {
open let dataType : DataSetType
open let inputDimension: Int
open let outputDimension: Int
fileprivate var inputs: [[Double]]
fileprivate var outputs: [[Double]]?
fileprivate var classes: [Int]?
open var optionalData: AnyObject? // Optional data that can be temporarily added by methods using the data set
public init(dataType : DataSetType, inputDimension : Int, outputDimension : Int)
{
// Remember the data parameters
self.dataType = dataType
self.inputDimension = inputDimension
self.outputDimension = outputDimension
// Allocate data arrays
inputs = []
switch dataType {
case .regression:
outputs = []
case .classification:
classes = []
case .realAndClass:
outputs = []
classes = []
}
}
public init(fromDataSet: DataSet)
{
// Remember the data parameters
self.dataType = fromDataSet.dataType
self.inputDimension = fromDataSet.inputDimension
self.outputDimension = fromDataSet.outputDimension
// Copy data arrays
inputs = fromDataSet.inputs
outputs = fromDataSet.outputs
classes = fromDataSet.classes
}
public init?(fromRegressionDataSet: MLRegressionDataSet)
{
// Remember the data parameters
self.dataType = .regression
self.inputDimension = fromRegressionDataSet.inputDimension
self.outputDimension = fromRegressionDataSet.outputDimension
// Copy data arrays
inputs = []
outputs = []
classes = nil
do {
for index in 0..<fromRegressionDataSet.size {
inputs.append(try fromRegressionDataSet.getInput(index))
outputs!.append(try fromRegressionDataSet.getOutput(index))
}
}
catch {
return nil
}
}
public init?(fromClassificationDataSet: MLClassificationDataSet)
{
// Remember the data parameters
self.dataType = .classification
self.inputDimension = fromClassificationDataSet.inputDimension
self.outputDimension = 1
// Copy data arrays
inputs = []
outputs = nil
classes = []
do {
for index in 0..<fromClassificationDataSet.size {
inputs.append(try fromClassificationDataSet.getInput(index))
classes!.append(try fromClassificationDataSet.getClass(index))
}
}
catch {
return nil
}
}
public init?(fromCombinedDataSet: MLCombinedDataSet)
{
// Remember the data parameters
self.dataType = .realAndClass
self.inputDimension = fromCombinedDataSet.inputDimension
self.outputDimension = fromCombinedDataSet.outputDimension
// Copy data arrays
inputs = []
outputs = []
classes = []
do {
for index in 0..<fromCombinedDataSet.size {
inputs.append(try fromCombinedDataSet.getInput(index))
outputs!.append(try fromCombinedDataSet.getOutput(index))
classes!.append(try fromCombinedDataSet.getClass(index))
}
}
catch {
return nil
}
}
public init?(dataType : DataSetType, withInputsFrom: MLDataSet)
{
// Remember the data parameters
self.dataType = dataType
self.inputDimension = withInputsFrom.inputDimension
self.outputDimension = withInputsFrom.outputDimension
// Allocate data arrays
inputs = []
switch dataType {
case .regression:
outputs = []
case .classification:
classes = []
case .realAndClass:
outputs = []
classes = []
}
// Copy the inputs
for index in 0..<withInputsFrom.size {
do {
inputs.append(try withInputsFrom.getInput(index))
}
catch {
return nil
}
}
}
public init?(fromDataSet: MLDataSet, withEntries: [Int])
{
// Remember the data parameters
self.dataType = fromDataSet.dataType
self.inputDimension = fromDataSet.inputDimension
self.outputDimension = fromDataSet.outputDimension
// Allocate data arrays
inputs = []
switch dataType {
case .regression:
outputs = []
case .classification:
classes = []
case .realAndClass:
outputs = []
classes = []
}
// Copy the entries
do {
try includeEntries(fromDataSet: fromDataSet, withEntries: withEntries)
}
catch {
return nil
}
}
public init?(fromDataSet: MLDataSet, withEntries: ArraySlice<Int>)
{
// Remember the data parameters
self.dataType = fromDataSet.dataType
self.inputDimension = fromDataSet.inputDimension
self.outputDimension = fromDataSet.outputDimension
// Allocate data arrays
inputs = []
switch dataType {
case .regression:
outputs = []
case .classification:
classes = []
case .realAndClass:
outputs = []
classes = []
}
// Copy the entries
do {
try includeEntries(fromDataSet: fromDataSet, withEntries: withEntries)
}
catch {
return nil
}
}
/// Get entries from another matching dataset
open func includeEntries(fromDataSet: MLDataSet, withEntries: [Int]) throws
{
// Make sure the dataset matches
if dataType != fromDataSet.dataType { throw DataTypeError.invalidDataType }
if inputDimension != fromDataSet.inputDimension { throw DataTypeError.wrongDimensionOnInput }
if outputDimension != fromDataSet.outputDimension { throw DataTypeError.wrongDimensionOnOutput }
// Get cast versions of the input based on the type so we can get the output
var regressionSet : MLRegressionDataSet?
var classifierSet : MLClassificationDataSet?
var combinedSet : MLCombinedDataSet?
switch dataType {
case .regression:
regressionSet = fromDataSet as? MLRegressionDataSet
case .classification:
classifierSet = fromDataSet as? MLClassificationDataSet
case .realAndClass:
combinedSet = fromDataSet as? MLCombinedDataSet
}
// Copy the entries
for index in withEntries {
if (index < 0) { throw DataIndexError.negative }
if (index >= fromDataSet.size) { throw DataIndexError.indexAboveDataSetSize }
inputs.append(try fromDataSet.getInput(index))
switch dataType {
case .regression:
outputs!.append(try regressionSet!.getOutput(index))
case .classification:
classes!.append(try classifierSet!.getClass(index))
case .realAndClass:
outputs!.append(try combinedSet!.getOutput(index))
classes!.append(try combinedSet!.getClass(index))
}
}
}
/// Get entries from another matching dataset
open func includeEntries(fromDataSet: MLDataSet, withEntries: ArraySlice<Int>) throws
{
// Make sure the dataset matches
if dataType != fromDataSet.dataType { throw DataTypeError.invalidDataType }
if inputDimension != fromDataSet.inputDimension { throw DataTypeError.wrongDimensionOnInput }
if outputDimension != fromDataSet.outputDimension { throw DataTypeError.wrongDimensionOnOutput }
// Get cast versions of the input based on the type so we can get the output
var regressionSet : MLRegressionDataSet?
var classifierSet : MLClassificationDataSet?
var combinedSet : MLCombinedDataSet?
switch dataType {
case .regression:
regressionSet = fromDataSet as? MLRegressionDataSet
case .classification:
classifierSet = fromDataSet as? MLClassificationDataSet
case .realAndClass:
combinedSet = fromDataSet as? MLCombinedDataSet
}
// Copy the entries
for index in withEntries {
if (index < 0) { throw DataIndexError.negative }
if (index >= fromDataSet.size) { throw DataIndexError.indexAboveDataSetSize }
inputs.append(try fromDataSet.getInput(index))
switch dataType {
case .regression:
outputs!.append(try regressionSet!.getOutput(index))
case .classification:
classes!.append(try classifierSet!.getClass(index))
case .realAndClass:
outputs!.append(try combinedSet!.getOutput(index))
classes!.append(try combinedSet!.getClass(index))
}
}
}
/// Get inputs from another matching dataset, setting outputs to 0
open func includeEntryInputs(fromDataSet: MLDataSet, withEntries: [Int]) throws
{
// Make sure the dataset inputs match
if inputDimension != fromDataSet.inputDimension { throw DataTypeError.wrongDimensionOnInput }
// Copy the inputs
for index in withEntries {
if (index < 0) { throw DataIndexError.negative }
if (index >= fromDataSet.size) { throw DataIndexError.indexAboveDataSetSize }
inputs.append(try fromDataSet.getInput(index))
switch dataType {
case .regression:
outputs!.append([Double](repeating: 0.0, count: outputDimension))
case .classification:
classes!.append(0)
case .realAndClass:
outputs!.append([Double](repeating: 0.0, count: outputDimension))
classes!.append(0)
}
}
}
/// Get inputs from another matching dataset, setting outputs to 0
open func includeEntryInputs(fromDataSet: MLDataSet, withEntries: ArraySlice<Int>) throws
{
// Make sure the dataset inputs match
if inputDimension != fromDataSet.inputDimension { throw DataTypeError.wrongDimensionOnInput }
// Copy the inputs
for index in withEntries {
if (index < 0) { throw DataIndexError.negative }
if (index >= fromDataSet.size) { throw DataIndexError.indexAboveDataSetSize }
inputs.append(try fromDataSet.getInput(index))
switch dataType {
case .regression:
outputs!.append([Double](repeating: 0.0, count: outputDimension))
case .classification:
classes!.append(0)
case .realAndClass:
outputs!.append([Double](repeating: 0.0, count: outputDimension))
classes!.append(0)
}
}
}
open var size: Int
{
return inputs.count
}
open func singleOutput(_ index: Int) -> Double?
{
// Validate the index
if (index < 0) { return nil}
if (index >= inputs.count) { return nil }
// Get the data
if (dataType == .regression) {
return outputs![index][0]
}
else {
return Double(classes![index])
}
}
open func addDataPoint(input : [Double], output: [Double]) throws
{
// Validate the data
if (dataType == .classification) { throw DataTypeError.dataWrongForType }
if (input.count != inputDimension) { throw DataTypeError.wrongDimensionOnInput }
if (output.count != outputDimension) { throw DataTypeError.wrongDimensionOnOutput }
// Add the new data item
inputs.append(input)
outputs!.append(output)
if (dataType == .realAndClass) { classes!.append(0) }
}
open func addDataPoint(input : [Double], dataClass: Int) throws
{
// Validate the data
if (dataType == .regression) { throw DataTypeError.dataWrongForType }
if (input.count != inputDimension) { throw DataTypeError.wrongDimensionOnInput }
// Add the new data item
inputs.append(input)
classes!.append(dataClass)
if (dataType == .realAndClass) { outputs!.append([Double](repeating: 0.0, count: outputDimension)) }
}
open func addDataPoint(input : [Double], output: [Double], dataClass: Int) throws
{
// Validate the data
if (dataType != .realAndClass) { throw DataTypeError.dataWrongForType }
if (input.count != inputDimension) { throw DataTypeError.wrongDimensionOnInput }
if (output.count != outputDimension) { throw DataTypeError.wrongDimensionOnOutput }
// Add the new data item
inputs.append(input)
outputs!.append(output)
classes!.append(dataClass)
}
open func setOutput(_ index: Int, newOutput : [Double]) throws
{
// Validate the data
if (dataType == .classification) { throw DataTypeError.dataWrongForType }
if (index < 0) { throw DataIndexError.negative }
if (index > inputs.count) { throw DataIndexError.indexAboveDimension }
if (newOutput.count != outputDimension) { throw DataTypeError.wrongDimensionOnOutput }
// Make sure we have outputs up until this index (we have the inputs already)
if (index >= outputs!.count) {
while (index > outputs!.count) { // Insert any uncreated data between this index and existing values
outputs!.append([Double](repeating: 0.0, count: outputDimension))
if (dataType == .realAndClass) { classes!.append(0) }
}
// Append the new data
outputs!.append(newOutput)
if (dataType == .realAndClass) { classes!.append(0) }
}
else {
// Replace the new output item
outputs![index] = newOutput
}
}
open func setClass(_ index: Int, newClass : Int) throws
{
// Validate the data
if (dataType == .regression) { throw DataTypeError.dataWrongForType }
if (index < 0) { throw DataIndexError.negative }
if (index > inputs.count) { throw DataIndexError.negative }
// Make sure we have class labels up until this index (we have the inputs already)
if (index >= classes!.count) {
while (index > classes!.count) { // Insert any uncreated data between this index and existing values
classes!.append(0)
if (dataType == .realAndClass) { outputs!.append([Double](repeating: 0.0, count: outputDimension)) }
}
// Append the new data
classes!.append(newClass)
if (dataType == .realAndClass) { outputs!.append([Double](repeating: 0.0, count: outputDimension)) }
}
else {
// Replace the new output item
classes![index] = newClass
}
classes![index] = newClass
}
open func addUnlabeledDataPoint(input : [Double]) throws
{
// Validate the data
if (input.count != inputDimension) { throw DataTypeError.wrongDimensionOnInput }
// Add the new data item
inputs.append(input)
}
open func addTestDataPoint(input : [Double]) throws
{
// Validate the data
if (input.count != inputDimension) { throw DataTypeError.wrongDimensionOnInput }
// Add the new data item
inputs.append(input)
}
open func getInput(_ index: Int) throws ->[Double]
{
// Validate the data
if (index < 0) { throw DataIndexError.negative }
if (index > inputs.count) { throw DataIndexError.indexAboveDataSetSize }
return inputs[index]
}
open func getOutput(_ index: Int) throws ->[Double]
{
// Validate the data
if (dataType == .classification) { throw DataTypeError.dataWrongForType }
if (index < 0) { throw DataIndexError.negative }
if (index > outputs!.count) { throw DataIndexError.indexAboveDataSetSize }
return outputs![index]
}
open func getClass(_ index: Int) throws ->Int
{
// Validate the data
if (dataType == .regression) { throw DataTypeError.dataWrongForType }
if (index < 0) { throw DataIndexError.negative }
if (index > classes!.count) { throw DataIndexError.indexAboveDataSetSize }
return classes![index]
}
// Leave here in case it is used by other methods
open static func gaussianRandom(_ mean : Double, standardDeviation : Double) -> Double
{
return Gaussian.gaussianRandom(mean, standardDeviation: standardDeviation)
}
}