Skip to content

Latest commit

 

History

History
160 lines (126 loc) · 5.91 KB

README.md

File metadata and controls

160 lines (126 loc) · 5.91 KB

  
    EMNLP2020

Pytorch implementation of the paper "Modulated Fusion using Transformer for Linguistic-Acoustic Emotion Recognition"

@inproceedings{delbrouck-etal-2020-modulated,
    title = "Modulated Fusion using Transformer for Linguistic-Acoustic Emotion Recognition",
    author = "Delbrouck, Jean-Benoit  and
      Tits, No{\'e}  and
      Dupont, St{\'e}phane",
    booktitle = "Proceedings of the First International Workshop on Natural Language Processing Beyond Text",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.nlpbt-1.1",
    doi = "10.18653/v1/2020.nlpbt-1.1",
    pages = "1--10",
    abstract = "This paper aims to bring a new lightweight yet powerful solution for the task of Emotion Recognition and Sentiment Analysis. Our motivation is to propose two architectures based on Transformers and modulation that combine the linguistic and acoustic inputs from a wide range of datasets to challenge, and sometimes surpass, the state-of-the-art in the field. To demonstrate the efficiency of our models, we carefully evaluate their performances on the IEMOCAP, MOSI, MOSEI and MELD dataset. The experiments can be directly replicated and the code is fully open for future researches.",
}

Environement

Create a 3.6 python environement with:

torch              1.2.0    
torchvision        0.4.0   
numpy              1.18.1    

We use GloVe vectors from space. This can be installed to your environement using the following commands :

wget https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz -O en_vectors_web_lg-2.1.0.tar.gz
pip install en_vectors_web_lg-2.1.0.tar.gz

Data

Create a data folder and get the data:

mkdir -p data
cd data
wget -O data.zip https://www.dropbox.com/s/tz25q3xxfraw2r3/data.zip?dl=1
unzip data.zip

Training

Here is an example to train a MAT model on IEMOCAP:

mkdir -p ckpt
for i in {1..10}
do
    python main.py --dataset IEMOCAP \
                   --model Model_MAT \
                   --multi_head 4 \
                   --ff_size 1024 \
                   --hidden_size 512 \
                   --layer 2 \
                   --batch_size 32 \
                   --lr_base 0.0001 \
                   --dropout_r 0.1 \
                   --dropout_o 0.5 \
                   --name mymodel
done

Checkpoints will be stored in folder ckpt/mymodel

Evaluation

You can evaluate a model by typing :

python ensembling.py --name mymodel --sets test

The task settings are defined in the checkpoint state dict, so the evaluation will be carried on the dataset you trained your model on.

By default, the script globs all the training checkpoints inside the folder and ensembling will be performed To show further details of the evaluation from a specific ensembling, you can use the --index argument:

python ensembling.py --name mymodel --sets test --index 5

Pre-trained model

We release pre-trained models to replicate the results as shown in the paper. Models should be placed in the ckpt folder.

mkdir -p ckpt

IEMOCAP 4-class emotions

python ensembling.py --name IEMOCAP_pretrained --index 5 --sets test

              precision    recall  f1-score   support

           0       0.70      0.66      0.68       384
           1       0.68      0.75      0.71       278
           2       0.79      0.71      0.75       194
           3       0.78      0.81      0.79       229

    accuracy                           0.73      1085
   macro avg       0.74      0.73      0.73      1085
weighted avg       0.73      0.73      0.73      1085

Max ensemble w-accuracies for test : 72.53456221198157

MOSEI 2-class sentiment

python ensembling.py --name MOSEI_pretrained --index 9 --sets test

              precision    recall  f1-score   support

           0       0.75      0.57      0.65      1350
           1       0.84      0.92      0.88      3312

    accuracy                           0.82      4662
   macro avg       0.80      0.75      0.77      4662
weighted avg       0.82      0.82      0.81      4662

Max ensemble w-accuracies for test : 82.15358215358215

MOSI 2-class sentiment

python ensembling.py --name MOSI_pretrained --index 2 --sets test


              precision    recall  f1-score   support

           0       0.77      0.91      0.84       379
           1       0.84      0.63      0.72       277

    accuracy                           0.79       656
   macro avg       0.81      0.77      0.78       656
weighted avg       0.80      0.79      0.79       656

Max ensemble w-accuracies for test : 79.26829268292683

MELD 7-class emotions

python ensembling.py --name MELD_pretrained --index 9 --sets test


              precision    recall  f1-score   support

           0       0.64      0.52      0.58      1256
           1       0.36      0.58      0.45       281
           2       0.08      0.18      0.11        50
           3       0.23      0.25      0.24       208
           4       0.44      0.47      0.46       402
           5       0.23      0.24      0.23        68
           6       0.31      0.27      0.29       345

    accuracy                           0.45      2610
   macro avg       0.33      0.36      0.34      2610
weighted avg       0.48      0.45      0.46      2610