-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdashApp.py
700 lines (625 loc) · 32 KB
/
dashApp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
import base64
import copy
import traceback
import dash
import plotly
from dash import dcc
from dash import html
from dash.dependencies import Input, Output, State
import plotly.graph_objects as go
import ChartLayouts
import Charts
import pandas as pd
import Helper
from dash.exceptions import PreventUpdate
import SingleStudyCharts
from SUSDataset import SUSDataset
import Layouts
import styles
import zipfile
import tempfile
VERSION = '1.0.3 – 08.24'
app = dash.Dash(__name__)
app.title = 'SUS Analysis Toolkit'
app._favicon = ("assets/favicon.ico")
app.config.suppress_callback_exceptions = True
app.layout = Layouts.getMainContent(app, VERSION)
debugMode = False
@app.callback(
Output('multi-study-content', 'style'),
Output('single-study-content', 'style'),
Output('landing-page', 'style'),
Input('upload-data-multi', 'contents'),
Input('start-tool-button', 'n_clicks'),
Input('upload-data-single', 'contents'),
Input('start-tool-button-single', 'n_clicks'),
)
def init_main_page(contents_multi, contents_single, nclicks_multi, nclicks_single):
ctx = dash.callback_context
upload_id = ctx.triggered[0]['prop_id'].split('.')[0]
# When the multi study upload is triggered
if upload_id == 'upload-data-multi' or upload_id == 'start-tool-button':
return {'display': 'block'}, dash.no_update, {'display': 'none'}
# Single study upload trigger
elif upload_id == 'upload-data-single' or upload_id == 'start-tool-button-single':
return dash.no_update, {'display': 'block'}, {'display': 'none'}
# On changes to the editable table
else:
if contents_single is None and contents_multi is None:
raise PreventUpdate
@app.callback(
Output('main-plot-tab', 'children'),
Output('percentile-plot-tab', 'children'),
Output('per-item-tab', 'children'),
Output('conclusiveness-tab', 'children'),
Output("sessionPlotData-multi", 'data'),
Output('editable-table', 'data'),
Output('editable-table', 'columns'),
Output('table-error-icon', 'style'),
Output('editable-table', 'style_data_conditional'),
Output('multi-study-content', 'children'),
Input('upload-data-multi', 'contents'),
Input('editable-table', 'data'),
Input('editable-table', 'columns'),
Input('add-row-button', 'n_clicks'),
Input('start-tool-button', 'n_clicks'),
)
def update_multi_study(contents_multi, table_data, table_columns, add_row_button_nclicks, start_tool_button_nclicks):
ctx = dash.callback_context
input_trigger = ctx.triggered[0]['prop_id'].split('.')[0]
if input_trigger == 'upload-data-multi':
try:
if contents_multi is None:
raise PreventUpdate
# decode the upload data and convert it to pandas data frame
csvData = Helper.decodeContentToCSV(contents_multi)
# check if the upload file is correctly formated, has no null values etc.
Helper.checkUploadFile(csvData, False)
# Parse pandas dataframe to SUSDataset
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(csvData))
systemList = SUSData.getAllStudNames()
# Apply the formatting rules to the editable data table
columns = [{"name": i, "id": i} for i in csvData.columns]
for column in columns[0:10]:
column.update(Helper.editableTableTypeFormatting)
style_data_conditional = (Helper.conditionalFormattingEditableDataTable(csvData.columns.values.tolist()))
return ChartLayouts.CreateMainPlotLayout(SUSData, systemList), ChartLayouts.CreatePercentilePlotLayout(
SUSData, systemList), ChartLayouts.CreatePerQuestionChartLayout(SUSData,
systemList), ChartLayouts.CreateCocnlusivenessChartLayout(
SUSData), csvData.to_json(
date_format='iso', orient='split'), csvData.to_dict(
'records'), columns, dash.no_update, style_data_conditional, dash.no_update
# If something is wrong with the upload file, print the reason on the page.
except Helper.WrongUploadFileException as e:
print(e)
errorMessage = [html.Div(children=[
'There was an error processing this file: ' + str(e),
html.P(['Please refer to this ',
html.A('template', href=app.get_asset_url('singleStudyData.csv'),
download='singleStudyData.csv'),
' for help. ', ]),
html.P([html.A('Refresh', href='/'), ' the page to try again.'])
])]
return dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, errorMessage
except Exception:
print(traceback.format_exc())
errorMessage = [html.Div(children=[
'There was an error processing this file. ',
html.P(['Please refer to this ',
html.A('template', href=app.get_asset_url('singleStudyData.csv'),
download='singleStudyData.csv'),
' for help. ', ]),
html.P([html.A('Refresh', href='/'), ' the page to try again.'])
])]
return dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, errorMessage
elif 'start-tool-button' == input_trigger:
exampleData = Helper.createExampleDataFrame()
# Create SUSDataset from example dataframe
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(exampleData))
systemList = SUSData.getAllStudNames()
# Apply the formatting rules to the editable data table
columns = [{"name": i, "id": i} for i in exampleData.columns]
for column in columns[0:10]:
column.update(Helper.editableTableTypeFormatting)
return ChartLayouts.CreateMainPlotLayout(SUSData, systemList), ChartLayouts.CreatePercentilePlotLayout(SUSData,
systemList), ChartLayouts.CreatePerQuestionChartLayout(
SUSData, systemList), ChartLayouts.CreateCocnlusivenessChartLayout(SUSData), exampleData.to_json(
date_format='iso',
orient='split'), exampleData.to_dict(
'records'), columns, dash.no_update, (
Helper.conditionalFormattingEditableDataTable(exampleData.columns.values.tolist())), dash.no_update
elif input_trigger == 'editable-table':
# Checks whether all entries in the table are viable. If not the error overlay of the data table is enabled.
if Helper.tableDataIsInvalid(table_data):
return dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, table_data, dash.no_update, styles.tableErrorIconEnabledStyle, dash.no_update, dash.no_update
# Collecting the table heads for each of the columns of the table.
columns = []
for item in table_columns:
columns.append(item.get("name"))
# Creating the dataframe from the table entries
table_df = pd.DataFrame(data=table_data, columns=columns)
# parsing it to SUS Dataset, so all the graphs can be updated
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(table_df))
systemList = SUSData.getAllStudNames()
return ChartLayouts.CreateMainPlotLayout(SUSData, systemList), ChartLayouts.CreatePercentilePlotLayout(SUSData,
systemList), ChartLayouts.CreatePerQuestionChartLayout(
SUSData, systemList), ChartLayouts.CreateCocnlusivenessChartLayout(SUSData), table_df.to_json(
date_format='iso',
orient='split'), dash.no_update, dash.no_update, styles.tableErrorIconDefaultStyle, dash.no_update, dash.no_update
# On Press of the add-row button
elif input_trigger == 'add-row-button':
if add_row_button_nclicks > 0:
table_data.append({c['id']: '' for c in table_columns})
return dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, table_data, dash.no_update, dash.no_update, dash.no_update, dash.no_update
else:
if contents_multi is None:
raise PreventUpdate
@app.callback(
Output('single-study-tab', 'children'),
Output("sessionPlotData-single", 'data'),
Output('editable-table-single', 'data'),
Output('editable-table-single', 'columns'),
Output('table-error-icon-single', 'style'),
Output('editable-table-single', 'style_data_conditional'),
Output('single-study-content', 'children'),
Input('upload-data-single', 'contents'),
Input('editable-table-single', 'data'),
Input('editable-table-single', 'columns'),
Input('add-row-button-single', 'n_clicks'),
Input('start-tool-button-single', 'n_clicks'),
)
def update_single_study(contents_single, table_data, table_columns, add_row_button_nclicks, start_tool_button_nclicks):
ctx = dash.callback_context
input_trigger = ctx.triggered[0]['prop_id'].split('.')[0]
if input_trigger == 'upload-data-single':
try:
csvData = Helper.decodeContentToCSV(contents_single)
csvData = Helper.checkUploadFile(csvData, True)
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(csvData))
# The columns for the editable table. The system column is dropped, since the editable table isn't supposed to have it.
columns = [{"name": i, "id": i} for i in csvData.drop('System', axis=1).columns]
for column in columns:
column.update(Helper.editableTableTypeFormatting)
style_data_conditional = (Helper.conditionalFormattingEditableDataTable(csvData.columns.values.tolist()))
graph = [ChartLayouts.CreateSingleStudyChartLayout(SUSData)]
return graph, csvData.to_json(date_format='iso',
orient='split'), csvData.drop('System', axis=1).to_dict(
'records'), columns, dash.no_update, style_data_conditional, dash.no_update
except Helper.WrongUploadFileException as e:
print(e)
errorMessage = [html.Div(children=[
'There was an error processing this file: ' + str(e),
html.P(['Please refer to this ',
html.A('template', href=app.get_asset_url('singleStudyData.csv'),
download='singleStudyData.csv'),
' for help. ', ]),
html.P([html.A('Refresh', href='/'), ' the page to try again.'])
])]
return dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, errorMessage
except Exception as e:
print(e)
errorMessage = [html.Div(children=[
'There was an error processing this file. ',
html.P(['Please refer to this ',
html.A('template', href=app.get_asset_url('singleStudyData.csv'),
download='singleStudyData.csv'),
' for help. ', ]),
html.P([html.A('Refresh', href='/'), ' the page to try again.'])
])]
return dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, dash.no_update, errorMessage
elif input_trigger == 'editable-table-single':
# Checks whether all entries in the table are viable. If not the error overlay of the data table is enabled.
if Helper.tableDataIsInvalid(table_data):
return dash.no_update, dash.no_update, table_data, dash.no_update, styles.tableErrorIconEnabledStyle, dash.no_update, dash.no_update
# Collecting the table heads for each of the columns of the table.
columns = []
for item in table_columns:
columns.append(item.get("name"))
# Creating the dataframe from the table entries
table_df = pd.DataFrame(data=table_data, columns=columns)
table_df = Helper.checkUploadFile(table_df, True)
# parsing it to SUS Dataset, so all the graphs can be updated
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(table_df))
graph = [ChartLayouts.CreateSingleStudyChartLayout(SUSData)]
return graph, table_df.to_json(date_format='iso',
orient='split'), dash.no_update, dash.no_update, styles.tableErrorIconDefaultStyle, dash.no_update, dash.no_update
elif input_trigger == 'start-tool-button-single':
exampleData = Helper.createExampleDataFrame(singleStudy=True)
exampleData = Helper.checkUploadFile(exampleData, True)
# Create SUSDataset from example dataframe
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(exampleData))
# The columns for the editable table. The system column is dropped, since the editable table isn't supposed to have it.
columns = [{"name": i, "id": i} for i in exampleData.drop('System', axis=1).columns]
graph = [ChartLayouts.CreateSingleStudyChartLayout(SUSData)]
# Apply the formatting rules to the editable data table
style_data_conditional = (Helper.conditionalFormattingEditableDataTable(exampleData.columns.values.tolist()))
for column in columns[0:10]:
column.update(Helper.editableTableTypeFormatting)
return graph, exampleData.to_json(date_format='iso',
orient='split'), exampleData.drop('System', axis=1).to_dict(
'records'), columns, dash.no_update, style_data_conditional, dash.no_update
elif input_trigger == 'add-row-button-single':
if add_row_button_nclicks > 0:
table_data.append({c['id']: '' for c in table_columns})
return dash.no_update, dash.no_update, table_data, dash.no_update, dash.no_update, dash.no_update, dash.no_update
else:
if contents_single is None:
raise PreventUpdate
@app.callback(
Output('single-study-chart', 'figure'),
Input('sessionPlotData-single', 'data'),
Input('preset-single-study', 'value')
)
def update_SingleStudyMainplot(data_single, presetValue):
df = pd.read_json(data_single, orient='split')
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(df))
fig = SingleStudyCharts.singleStudyPresetDict[presetValue](SUSData.SUSStuds[0])
return fig
@app.callback(
Output("download-single-study-chart", "data"),
Input("download-single-study-chart-button", "n_clicks"),
State('single-study-chart', 'figure'),
prevent_initial_call=True,
)
def download_singlestudy_chart(n_clicks, figure):
figure = plotly.graph_objects.Figure(figure)
img_bytes = figure.to_image(format="png", width=1530, height=1048)
return dcc.send_bytes(src=img_bytes,
filename="single_study_plot.png")
@app.callback(
Output('mainplot', 'figure'),
# Output('mainplot', 'style'),
Output('datapoints-label', 'style'),
Output('mean_sdValue-label', 'style'),
Output('scaletype-info', 'children'),
Output('plotstyle-info', 'children'),
Output('mainplot-table-div', 'children'),
Output('custom-image-size-mainplot', 'style'),
Input('systems-mainplot', 'value'),
Input('sessionPlotData-multi', 'data'),
Input('datapoints-mainplot', 'value'),
Input('scale-mainplot', 'value'),
Input('orientation-mainplot', 'value'),
Input('plotstyle-mainplot', 'value'),
Input('mean_sd-mainplot', 'value'),
Input('axis-title-mainplot', 'value'),
Input('download-type-mainplot', 'value'),
Input('sort-by-mainplot', 'value'),
Input('colorize-by-scale', 'value'),
Input('sd_type-mainplot', 'value')
)
def update_Mainplot(systemsToPlot, data, datapointsValues, scaleValue, orientationValue, plotStyle, mean_sdValue,
axis_title, download_format, sort_value, colorizeByScale, sd_type):
df = pd.read_json(data, orient='split', dtype='int16')
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(df))
SUSData.sortBy(sort_value)
filteredSUSData = Helper.filterSUSStuds(SUSData, systemsToPlot)
mainplot_table = ChartLayouts.createMainplotTable(filteredSUSData, scaleValue,
sd_type == 'population')
fig = Charts.CreateMainplot(filteredSUSData, datapointsValues, scaleValue, orientationValue, plotStyle,
mean_sdValue, axis_title, colorizeByScale)
if plotStyle == 'per-question-chart':
datapointsLabelStyle = styles.disabledStyle
mean_sdValueLabelStyle = styles.disabledStyle
else:
datapointsLabelStyle = styles.defaultEditorLabel
mean_sdValueLabelStyle = styles.defaultEditorLabel
if download_format == 'customSize':
custom_image_label_style = {'display': 'block',
'font-weight': 'bold',
'padding': '10px 10px 10px 10px'}
else:
custom_image_label_style = {'display': 'none'}
return fig, datapointsLabelStyle, mean_sdValueLabelStyle, \
Helper.scaleInfoTexts[scaleValue], Helper.plotStyleInfoTexts[
plotStyle], mainplot_table, custom_image_label_style
@app.callback(
Output('per-question-chart', 'figure'),
Output('orientation-label', 'style'),
Output('systems-label', 'style'),
Output('per-question-context', 'style'),
Output('systems-label-radio', 'style'),
Output('per-item-table-div', 'children'),
Output('custom-image-size-perquestion', 'style'),
Input('systems-per-question-chart', 'value'),
Input('questions-per-question-chart', 'value'),
Input('sessionPlotData-multi', 'data'),
Input('orientation-per-question-chart', 'value'),
Input('plotstyle-per-question-chart', 'value'),
Input('download-type-perquestion', 'value'),
Input('systems-per-question-chart-radio', 'value'),
)
def update_PerQuestionChart(systemsToPlot, questionsTicked, data, orientationValue, plotStyle, download_format,
systemToPlotRadio):
df = pd.read_json(data, orient='split', dtype='int16')
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(df))
# SUSData.sortBy(sort_value)
SUSData = Helper.filterSUSStuds(SUSData, systemsToPlot)
orientationLabelStyle = {'display': 'none'}
systemsLabelStyle = {'display': 'none'}
perQuestionContextStyle = {'float': 'left'}
systemsLabelRadioStyle = {'display': 'none'}
perItemTable = ChartLayouts.createPerItemTable(SUSData, questionsTicked)
if plotStyle == 'per-question-chart':
fig = Charts.CreatePerQuestionChart(SUSData, questionsTicked, systemsToPlot, orientationValue)
orientationLabelStyle = {'display': 'block',
'font-weight': 'bold',
'padding': '10px 10px 10px 10px'}
systemsLabelStyle = {'display': 'block',
'font-weight': 'bold',
'padding': '10px 10px 10px 10px'}
elif plotStyle == 'boxplot':
fig = Charts.CreatePerQuestionBoxPlot(SUSData, questionsTicked, systemsToPlot, orientationValue)
orientationLabelStyle = {'display': 'block',
'font-weight': 'bold',
'padding': '10px 10px 10px 10px'}
systemsLabelStyle = {'display': 'block',
'font-weight': 'bold',
'padding': '10px 10px 10px 10px'}
elif plotStyle == 'radar':
fig = Charts.CreateRadarChart(SUSData, questionsTicked, systemsToPlot)
systemsLabelStyle = {'display': 'block',
'font-weight': 'bold',
'padding': '10px 10px 10px 10px'}
elif plotStyle == 'likert':
systemsLabelRadioStyle = {'display': 'block',
'font-weight': 'bold',
'padding': '10px 10px 10px 10px',
}
perQuestionContextStyle = {'display': 'none'}
fig = Charts.CreateLikertChart(SUSData.getIndividualStudyData(systemToPlotRadio), questionsTicked)
if download_format == 'customSize':
custom_image_label_style = {'display': 'block',
'font-weight': 'bold',
'padding': '10px 10px 10px 10px'}
else:
custom_image_label_style = {'display': 'none'}
return fig, orientationLabelStyle, systemsLabelStyle, perQuestionContextStyle, systemsLabelRadioStyle, perItemTable, custom_image_label_style
@app.callback(
Output('percentilePlot', 'figure'),
Output('percentile-plot-table-div', 'children'),
Output('custom-image-size-percentile', 'style'),
Input('systems-percentilePlot', 'value'),
Input('sessionPlotData-multi', 'data'),
Input('download-type-percentile', 'value'),
Input('sort-by-percentile', 'value'),
)
def update_PercentilePlot(systems, data, download_format, sort_value):
df = pd.read_json(data, orient='split', dtype='int16')
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(df))
SUSData.sortBy(sort_value)
table = ChartLayouts.createPercentilePlotTable(Helper.filterSUSStuds(SUSData, systems))
fig = Charts.CreatePercentilePlot(SUSData, systems)
if download_format == 'customSize':
custom_image_label_style = {'display': 'block',
'font-weight': 'bold',
'padding': '10px 10px 10px 10px'}
else:
custom_image_label_style = {'display': 'none'}
return fig, table, custom_image_label_style
@app.callback(
Output('conclusivenessPlot', 'figure'),
Output('conclusiveness-plot-table-div', 'children'),
Output('custom-image-size-conclusiveness', 'style'),
Input('systems-conclusivenessPlot', 'value'),
Input('sessionPlotData-multi', 'data'),
Input('download-type-conclusiveness', 'value'),
)
def update_Conclusiveness(systems, data, download_format):
df = pd.read_json(data, orient='split', dtype='int16')
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(df))
filteredSUSData = Helper.filterSUSStuds(SUSData, systems)
fig = Charts.CreateConclusivenessChart(filteredSUSData)
table = ChartLayouts.CreateConclusivenessPlotTable(filteredSUSData, systems)
if download_format == 'customSize':
custom_image_label_style = {'display': 'block',
'font-weight': 'bold',
'padding': '10px 10px 10px 10px'}
else:
custom_image_label_style = {'display': 'none'}
return fig, table, custom_image_label_style
@app.callback(
Output('main-plot-dataframe', 'style_data_conditional'),
Input('scale-mainplot', 'value')
)
def update_mainplot_table(scaleValue):
return Helper.dataFrameConditions[scaleValue]
@app.callback(
Output("download-all-charts-data", "data"),
Input("download-all-per-question-button", "n_clicks"),
Input("download-all-mainplot-button", "n_clicks"),
Input("download-all-percentile-button", "n_clicks"),
Input("download-all-conclusiveness-button", "n_clicks"),
State('mainplot', 'figure'),
State('per-question-chart', 'figure'),
State('percentilePlot', 'figure'),
State('conclusivenessPlot', 'figure'),
State('sessionPlotData-multi', 'data'),
State('questions-per-question-chart', 'value'),
prevent_initial_call=True
)
def download_all_charts(n_clicks, n_clicks_2, n_clicks_3, n_clicks_4, mainplot, per_question, percentile,
conclusiveness, data, questions_ticked):
# This is needed because prevent_initial_call=True doesnt't work, if the input component is generated by another callback
if n_clicks is None and n_clicks_2 is None and n_clicks_3 is None and n_clicks_4 is None:
return dash.no_update
# Create Data Frames for the .csv files
df = pd.read_json(data, orient='split')
systemList = set(df['System'])
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(df))
# Mainplot Dataframe
df_mainplot = ChartLayouts.createMainplotDataframe(SUSData)
# Per Question Dataframe
df_per_question = ChartLayouts.createPerItemDataFrame(SUSData, questions_ticked)
# Percentile Dataframe
df_percentile = ChartLayouts.createPercentilePlotDataFrame(SUSData)
# Conclusiveness Dataframe
df_conclusiveness = ChartLayouts.CreateConclusivenessPlotDataFrame(SUSData, systemList)
# Create png-images from figures
# Mainplot
mainplot_fig = go.Figure(mainplot)
img_mainplot = Helper.downloadChartContent('defaultPlot', mainplot_fig)
# Per Question
per_question_fig = go.Figure(per_question)
img_per_question = Helper.downloadChartContent('defaultPlot', per_question_fig)
# Percentile
percentile_fig = go.Figure(percentile)
img_percentile = img_per_question = Helper.downloadChartContent('defaultPlot', percentile_fig)
# Conclusiveness
conclusiveness_fig = go.Figure(conclusiveness)
img_conclusiveness = cimg_percentile = img_per_question = Helper.downloadChartContent('defaultPlot',
conclusiveness_fig)
# Write images in zip file
zip_tf = tempfile.NamedTemporaryFile(delete=False, suffix='.zip')
zf = zipfile.ZipFile(zip_tf, mode='w', compression=zipfile.ZIP_DEFLATED)
zf.writestr("main_plot.png", img_mainplot)
zf.writestr("per_item_plot.png", img_per_question)
zf.writestr("percentile_plot.png", img_percentile)
zf.writestr("conclusiveness_plot.png", img_conclusiveness)
# Write .csv to zip files
zf.writestr("mainplot.csv", df_mainplot.to_csv(encoding='utf-8-sig', index=False))
zf.writestr("per-question.csv", df_per_question.to_csv(encoding='utf-8', index=False))
zf.writestr("percentile.csv", df_percentile.to_csv(encoding='utf-8', index=False))
zf.writestr("conclusiveness.csv", df_conclusiveness.to_csv(encoding='utf-8', index=False))
# Close zip file
zf.close()
zip_tf.flush()
zip_tf.seek(0)
return dcc.send_file(zip_tf.name, filename="my_plots.zip")
@app.callback(
Output('download-image-conclusiveness', "data"),
Input('image-conclusiveness-button', 'n_clicks'),
State('download-type-conclusiveness', 'value'),
State('conclusivenessPlot', 'figure'),
State('image-width-conclusiveness', 'value'),
State('image-height-conclusiveness', 'value'),
State('image-font-size-conclusiveness', 'value'),
prevent_initial_call=True
)
def download_mainplot_image(n_clicks, downloadType, fig, customWidth, customHeight, customFontSize):
fig = go.Figure(fig)
img_bytes = Helper.downloadChartContent(downloadType, fig, customWidth, customHeight, customFontSize)
return dcc.send_bytes(img_bytes, "plot.png")
@app.callback(
Output('download-image-percentile', "data"),
Input('image-percentile-button', 'n_clicks'),
State('download-type-percentile', 'value'),
State('percentilePlot', 'figure'),
State('image-width-percentile', 'value'),
State('image-height-percentile', 'value'),
State('image-font-size-percentile', 'value'),
prevent_initial_call=True
)
def download_mainplot_image(n_clicks, downloadType, fig, customWidth, customHeight, customFontSize):
fig = go.Figure(fig)
img_bytes = Helper.downloadChartContent(downloadType, fig, customWidth, customHeight, customFontSize)
return dcc.send_bytes(img_bytes, "plot.png")
@app.callback(
Output('download-image-mainplot', "data"),
Input('image-mainplot-button', 'n_clicks'),
State('download-type-mainplot', 'value'),
State('mainplot', 'figure'),
State('image-width-mainplot', 'value'),
State('image-height-mainplot', 'value'),
State('image-font-size-mainplot', 'value'),
prevent_initial_call=True
)
def download_mainplot_image(n_clicks, downloadType, fig, customWidth, customHeight, customFontSize):
fig = go.Figure(fig)
img_bytes = Helper.downloadChartContent(downloadType, fig, customWidth, customHeight, customFontSize)
return dcc.send_bytes(img_bytes, "plot.png")
@app.callback(
Output('download-image-perquestion', "data"),
Input('image-perquestion-button', 'n_clicks'),
State('download-type-perquestion', 'value'),
State('per-question-chart', 'figure'),
State('image-width-perquestion', 'value'),
State('image-height-perquestion', 'value'),
State('image-font-size-perquestion', 'value'),
prevent_initial_call=True
)
def download_perquestion_image(n_clicks, downloadType, fig, customWidth, customHeight, customFontSize):
fig = go.Figure(fig)
img_bytes = Helper.downloadChartContent(downloadType, fig, customWidth, customHeight, customFontSize)
return dcc.send_bytes(img_bytes, "plot.png")
@app.callback(
Output('download-csv-mainplot', 'data'),
Input('csv-mainplot-button', 'n_clicks'),
State('sessionPlotData-multi', 'data'),
prevent_initial_call=True
)
def download_csv_mainplot(n_clicks, data):
df = pd.read_json(data, orient='split')
systemList = set(df['System'])
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(df))
df = ChartLayouts.createMainplotDataframe(SUSData)
return dcc.send_data_frame(df.to_csv, "mainplot.csv", index=False)
@app.callback(
Output('download-csv-per-question', 'data'),
Input('csv-per-question-button', 'n_clicks'),
State('sessionPlotData-multi', 'data'),
State('questions-per-question-chart', 'value'),
prevent_initial_call=True
)
def download_csv_per_question(n_clicks, data, questions_ticked):
df = pd.read_json(data, orient='split')
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(df))
df = ChartLayouts.createPerItemDataFrame(SUSData, questions_ticked)
return dcc.send_data_frame(df.to_csv, "per_question.csv", index=False)
@app.callback(
Output('download-csv-percentile', 'data'),
Input('csv-percentile-button', 'n_clicks'),
State('sessionPlotData-multi', 'data'),
prevent_initial_call=True
)
def download_csv_percentile(n_clicks, data):
df = pd.read_json(data, orient='split')
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(df))
systemList = set(df['System'])
df = ChartLayouts.createPercentilePlotDataFrame(SUSData)
return dcc.send_data_frame(df.to_csv, "percentile.csv", index=False)
@app.callback(
Output('download-csv-conclusiveness', 'data'),
Input('csv-conclusiveness-button', 'n_clicks'),
State('sessionPlotData-multi', 'data'),
prevent_initial_call=True
)
def download_csv_conclusiveness(n_clicks, data):
df = pd.read_json(data, orient='split')
SUSData = SUSDataset(Helper.parseDataFrameToSUSDataset(df))
systemList = set(df['System'])
df = ChartLayouts.CreateConclusivenessPlotDataFrame(SUSData, systemList)
return dcc.send_data_frame(df.to_csv, "conclusiveness.csv", index=False)
@app.callback(
Output('download-csv-data', 'data'),
Input('csv-data-button', 'n_clicks'),
State('editable-table', 'data'),
State('editable-table', 'columns'),
prevent_initial_call=True
)
def download_csv_data_multi(nclicks, data, table_columns):
columns = []
for item in table_columns:
columns.append(item.get("name"))
# Creating the dataframe from the table entries
table_df = pd.DataFrame(data=data, columns=columns)
return dcc.send_data_frame(table_df.to_csv, "studyData.csv", index=False, sep=';')
@app.callback(
Output('download-csv-data-single', 'data'),
Input('csv-data-button-single', 'n_clicks'),
State('editable-table-single', 'data'),
State('editable-table-single', 'columns'),
prevent_initial_call=True
)
def download_csv_data_single(nclicks, data, table_columns):
columns = []
for item in table_columns:
columns.append(item.get("name"))
# Creating the dataframe from the table entries
table_df = pd.DataFrame(data=data, columns=columns)
return dcc.send_data_frame(table_df.to_csv, "studyData.csv", index=False, sep=';')
if __name__ == '__main__':
if debugMode:
app.run(host='0.0.0.0', debug=True)
else:
app.run(port=80, host='0.0.0.0')