forked from zqevans/audio-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_ad_uncond_full.py
195 lines (151 loc) · 6.1 KB
/
train_ad_uncond_full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
#!/usr/bin/env python3
from prefigure.prefigure import get_all_args, push_wandb_config
from contextlib import contextmanager
from copy import deepcopy
import math
from pathlib import Path
import sys
import torch
from torch import optim, nn
from torch.nn import functional as F
from torch.utils import data
from tqdm import trange
import pytorch_lightning as pl
from pytorch_lightning.utilities.distributed import rank_zero_only
from einops import rearrange
from diffusion.pqmf import CachedPQMF as PQMF
import torchaudio
from ema_pytorch import EMA
import auraloss
import wandb
from aeiou.datasets import AudioDataset
from audio_diffusion_pytorch import AudioDiffusionModel, LogNormalDistribution, Distribution
from diffusion.model import ema_update
from aeiou.viz import audio_spectrogram_image
class DiffusionUncond(pl.LightningModule):
def __init__(self, global_args):
super().__init__()
self.diffusion = AudioDiffusionModel(
in_channels=2,
channels=256,
patch_blocks=1,
patch_factor=1,
multipliers=[4, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3],
factors=[1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2],
num_blocks=[1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4],
attentions=[0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2],
attention_heads=8,
attention_features=64,
attention_multiplier=2,
attention_use_rel_pos=False,
resnet_groups=8,
kernel_multiplier_downsample=2,
use_nearest_upsample=False,
use_skip_scale=True,
use_context_time=True,
use_magnitude_channels=False,
use_stft=True,
stft_num_fft=1023,
stft_hop_length=256,
diffusion_type="v",
diffusion_sigma_distribution=UniformDistribution(),
)
self.diffusion_ema = EMA(
self.diffusion,
beta=0.9999,
power=3/4,
update_after_step=100,
update_every=1
)
def configure_optimizers(self):
return optim.Adam([*self.diffusion.parameters()], lr=4e-5)
def training_step(self, batch, batch_idx):
reals = batch
batch_stdev = torch.std(batch.detach())
with torch.cuda.amp.autocast():
loss = self.diffusion(reals)
log_dict = {
'train/loss': loss.detach(),
'train/data_stdev': batch_stdev
}
self.log_dict(log_dict, prog_bar=True, on_step=True)
return loss
def on_before_zero_grad(self, *args, **kwargs):
self.diffusion_ema.update()
class ExceptionCallback(pl.Callback):
def on_exception(self, trainer, module, err):
print(f'{type(err).__name__}: {err}', file=sys.stderr)
class DemoCallback(pl.Callback):
def __init__(self, global_args):
super().__init__()
self.demo_every = global_args.demo_every
self.num_demos = global_args.num_demos
self.demo_samples = global_args.sample_size
self.demo_steps = global_args.demo_steps
self.sample_rate = global_args.sample_rate
@rank_zero_only
@torch.no_grad()
#def on_train_epoch_end(self, trainer, module):
def on_train_batch_end(self, trainer, module, outputs, batch, batch_idx):
last_demo_step = -1
if (trainer.global_step - 1) % self.demo_every != 0 or last_demo_step == trainer.global_step:
#if trainer.current_epoch % self.demo_every != 0:
return
last_demo_step = trainer.global_step
try:
print("Creating noise")
noise = torch.randn([self.num_demos, 2, self.demo_samples]).to(module.device)
print("Starting sampling")
fakes = module.diffusion_ema.ema_model.sample(noise=noise, num_steps=self.demo_steps)
print("Rearranging demos")
# Put the demos together
fakes = rearrange(fakes, 'b d n -> d (b n)')
log_dict = {}
filename = f'demo_{trainer.global_step:08}.wav'
fakes = fakes.clamp(-1, 1).mul(32767).to(torch.int16).cpu()
torchaudio.save(filename, fakes, self.sample_rate)
log_dict[f'demo'] = wandb.Audio(filename,
sample_rate=self.sample_rate,
caption=f'Demos')
log_dict[f'demo_melspec_left'] = wandb.Image(audio_spectrogram_image(fakes))
trainer.logger.experiment.log(log_dict, step=trainer.global_step)
except Exception as e:
print(f'{type(e).__name__}: {e}')
def main():
args = get_all_args()
args.latent_dim = 0
#args.random_crop = False
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
torch.manual_seed(args.seed)
train_set = AudioDataset(
[args.training_dir],
sample_rate=args.sample_rate,
sample_size=args.sample_size,
random_crop=args.random_crop,
augs='Stereo()'
)
train_dl = data.DataLoader(train_set, args.batch_size, shuffle=True,
num_workers=args.num_workers, persistent_workers=True, pin_memory=True)
wandb_logger = pl.loggers.WandbLogger(project=args.name)
exc_callback = ExceptionCallback()
ckpt_callback = pl.callbacks.ModelCheckpoint(every_n_train_steps=args.checkpoint_every, save_top_k=-1)
demo_callback = DemoCallback(args)
diffusion_model = DiffusionUncond(args)
wandb_logger.watch(diffusion_model)
push_wandb_config(wandb_logger, args)
diffusion_trainer = pl.Trainer(
devices=args.num_gpus,
accelerator="gpu",
num_nodes = args.num_nodes,
strategy='ddp_find_unused_parameters_false',
precision=16,
accumulate_grad_batches=args.accum_batches,
callbacks=[ckpt_callback, demo_callback, exc_callback],
logger=wandb_logger,
log_every_n_steps=1,
max_epochs=10000000,
)
diffusion_trainer.fit(diffusion_model, train_dl, ckpt_path=args.ckpt_path)
if __name__ == '__main__':
main()