-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmosaick.py
882 lines (741 loc) · 32.6 KB
/
mosaick.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
# Photo Mosaic library -- Jim Bumgardner
# based on the Perl scripts I wrote for the book Flickr Hacks
#
from PIL import Image, ImageDraw
import re, json, copy
from math import sqrt
from operator import itemgetter
import datetime as dt
from mosaic_constants import json_path, render_path
class Mosaick:
def __init__(self, params):
# set params with reasonable defaults...
self.json_path = json_path
self.render_path = render_path
self.max_images = params.get('max_images', 800)
self.imageset = params.get('imageset', [])
self.reso = params.get('reso', 0)
self.resoX = params.get('resoX', 7)
self.resoY = params.get('resoY', 7)
self.cellsize = params.get('cellsize', 20)
self.noborders = params.get('noborders', False)
self.verbose = params.get('verbose', False)
self.grabThumbs = params.get('grabThumbs', False)
self.doflops = params.get('doflops', False)
self.load = params.get('load', False)
self.rootname = params.get('rootname', 'mosaic')
self.dupesOK = params.get('dupesOK', False)
self.cspace = params.get('cspace', False) # color space (in bits per component, 0 = normalized)
self.hmode = params.get('hmode', False) # heatmap mode, with overlapping tiles - unported from perl
self.hlimit = params.get('hlimit', 0) # heatmap image limit 0 = unlimited
self.hbase = params.get('hbase', '')
self.mixin = params.get('mixin', 0)
self.cmode = params.get('cmode', 'Darken') # also 'Blend'
self.anno = params.get('anno', False)
self.grayscale = params.get('grayscale', False)
self.minDupeDist = params.get('minDupeDist', 8)
self.tileblur = params.get('tileblur', 0.4)
self.tilefilter = params.get('tilefilter', 'Sinc') # currently unused
self.targetblur = params.get('targetblur', 0.4)
self.dupeList = params.get('dupeList', {})
self.hasForces = params.get('hasForces', False)
self.targetfilter = params.get('targetfilter', 'Sinc') # currently unused
self.basepic = params.get('basepic', '')
self.usevars = params.get('usevars', True)
self.accurate = params.get('accurate', False)
self.draft = params.get('draft', False)
self.filename = params.get('filename', '')
self.quality = params.get('quality', 90)
self.strip = params.get('strip', False)
self.png = params.get('png', False)
self.tint = params.get('tint', False)
self.filter = Image.ANTIALIAS # NEAREST, BICUBIC, BILINEAR, ANTIALIAS is best for color averaging
# computed
print("Quality = %d" % (self.quality))
print("Mixin = %d" % (self.mixin))
if self.hmode and self.cspace == 0:
self.cspace = 8
if self.resoX == 0 and self.reso > 0:
self.resoX = reso
if self.resoY == 0:
self.resoY = self.resoX
self.reso2 = self.resoX * self.resoY
self.tileAspectRatio = self.resoX / float(self.resoY)
self.minDupeDist2 = self.minDupeDist ** 2
print("Min Dupe Dist ^2 = %d" % (self.minDupeDist2))
self.basename = self.basepic
if self.hmode and self.hbase == '':
self.hbase = self.basepic
self.basename = re.sub(r"^.*\/", '', self.basename)
self.basename = re.sub(r"\.(jpg|png|gif)", '', self.basename)
self.sortedcells = []
self.finalimages = []
self.images = []
print("Done Mosaic Init")
def setupCells(self):
cells = []
aart = 'BEEEEEEEEEMWWQQQQQQQQQQQNHHHHH@@@@@KKKRRRAA#dddgg88bbbbXXpppPFFFDSSww4444%k9966m222xx$ZhhLLLf&&&V3s55555555ooTuuzvvJJJJJJJJJnclIrrrttjjjjjjj[]]??>><1}}}}}}}}{{{{{="""i/\\\\\\\\\\++++*;;||||!!!!^^^^^^^^^^^^^^^^:::,,,,,,\'\'~~~~~-----____________.......`````````````';
srcimg = Image.open(self.basepic)
w, h = srcimg.size
aspect = h/float(w)
self.targetAspectRatio = aspect
hcells = sqrt(self.max_images / aspect)
vcells = (hcells * aspect) * self.tileAspectRatio
self.hcells = int(hcells + 0.5)
self.vcells = int(vcells + 0.5)
if (self.hcells * self.vcells > self.max_images):
self.hcells = int(hcells)
self.vcells = int(vcells)
if self.resoX*self.hcells > w:
self.resoX = int(w / self.hcells)
if self.resoX < 1:
self.resoX = 1
self.resoY = int(self.resoX / self.tileAspectRatio)
self.reso2 = self.resoX * self.resoY
print("Forcing Reso to %d x %d due to lack of resolution in target image" % (self.resoX, self.resoY))
elif self.resoY * self.vcells > h:
self.resoY = int(h / self.vcells)
if self.resoY < 1:
self.resoY = 1
self.resoX = int(self.resoY * self.tileAspectRatio)
self.reso2 = self.resoX * self.resoY
print("Forcing Reso to %d x %d due to lack of resolution in target image" % (self.resoX, self.resoY))
if self.verbose:
print("Original Image Width %d x %d" % (w,h))
print("Allocating Cell Data %dx%d x %dx%d (AR=%.2f)" % (self.hcells, self.vcells, self.resoX, self.resoY, self.tileAspectRatio))
# this makes baseimg, and baseimg2 clones of srcimg, but converted specifically to RGB space
# baseimg = Image.open(self.basepic)
baseimg = srcimg.convert("RGB")
baseimg2 = srcimg.convert("RGB")
baseimg = baseimg.resize((self.hcells, self.vcells), self.filter)
baseimg2 = baseimg2.resize((self.hcells*self.resoX, self.vcells*self.resoY), self.filter)
bpixels = baseimg.getdata()
w2,h2 = baseimg2.size
if not self.hmode:
# normal mode
print("Walking Pixels")
i = 0
for y in range(self.vcells):
outputStr = '' # '\033[7m'
for x in range(self.hcells):
rgb = bpixels[i]
# rgb = baseimg.get_pixels(x,y,1,1)[0]
l = getHaeberliLuminance(rgb)
hsv = RGBtoHSV(rgb)
vc = [0,90,37,97,97][int(l*4)]
chrpos = int(l*255)
chr = aart[chrpos:chrpos+1]
# outputStr += chr + chr
outputStr += "\033[%dm%s%s" % (vc,chr,chr)
# puts "rgb = #{rgb[0]},#{rgb[1]},#{rgb.blue} max=#{Magick::QuantumRange} sat=#{hsv[1]} "
x0 = x * self.resoX
y0 = y * self.resoY
# pull the appropriate rectangle - note we could also do this using getdata if we crop it out
croptile = baseimg2.crop((x0,y0,x0+self.resoX,y0+self.resoY))
pix = list(croptile.getdata())
# !! convert to cspace...
# !! lab color conversion...
# precompute flopped pixels...
fpix = list(croptile.transpose(Image.FLIP_LEFT_RIGHT).getdata())
cell = { 'i':i, 'x':x, 'y':y, 'l':l, 's':hsv[1], 'pix':pix, 'fpix':fpix, 'avg':rgb }
cells.append(cell)
i += 1
outputStr += "\033[0m"
print(outputStr)
else:
# hmode - overlapping cells - experimental
i = 0
for y in range(self.vcells*self.resoY-self.resoY):
outputStr = ''
for x in range(self.hcells*self.resoX-self.resoX):
# note: this is not the correct average rgb for the cell
# but I don't think we're using luminance for hmode...
rgb = baseimg.getpixel((int(x/self.resoX),int(y/self.resoY)))
l = getHaeberliLuminance(rgb)
if x % self.resoX == 0 and y % self.resoY == 0:
chrpos = int(l*255)
chr = aart[chrpos:chrpos+1]
outputStr += chr + chr
pix = list(baseimg2.crop((x,y,x+self.resoX,y+self.resoY)).getdata())
# !! convert to color space
# !! lab color conversion...
# !! tinting
cell = { 'i':i, 'x':x, 'y':y, 'l':l, 'var':0, 'pix':pix, 'avg':rgb }
cells.append(cell)
i += 1
if outputStr != '':
print(outputStr)
self.cells = cells
if not self.hmode:
# sort cells by constrast of interior pixels - high contrast cells (such as eyes) will be processed first
for cell in cells:
cell['e'] = self.getEdginess(cell)
# sort cells here
self.sortedcells = sorted(cells, key=itemgetter('e'), reverse=True)
print("Done setup cells")
def getEdginess(self,cell):
pix = cell['pix']
cumdiff = 0
resoX = self.resoX
for i in range(self.reso2):
x = i % self.resoX
y = int(i / self.resoX)
if y > 0:
j = i - self.resoX
cumdiff += ((pix[j][0] - pix[i][0]) ** 2 + (pix[j][1] - pix[i][1]) ** 2 + (pix[j][2] - pix[i][2]) ** 2) / 255.0
if y < self.resoY-1:
j = i + self.resoX
cumdiff += ((pix[j][0] - pix[i][0]) ** 2 + (pix[j][1] - pix[i][1]) ** 2 + (pix[j][2] - pix[i][2]) ** 2) / 255.0
if x > 0:
j = i - 1
cumdiff += ((pix[j][0] - pix[i][0]) ** 2 + (pix[j][1] - pix[i][1]) ** 2 + (pix[j][2] - pix[i][2]) ** 2) / 255.0
if x < self.resoX-1:
j = i + 1
cumdiff += ((pix[j][0] - pix[i][0]) ** 2 + (pix[j][1] - pix[i][1]) ** 2 + (pix[j][2] - pix[i][2]) ** 2) / 255.0
return cumdiff
def makeHeatmap(self, filename):
print("Making heatmap")
if not self.sortedcells:
self.setupCells()
if not self.sortedcells:
print("Problem setting up cells for heatmap")
return
width = self.resoX * self.hcells
height = self.resoY * self.vcells
heatmap = Image.new("RGB", (width, height), "black")
hpixels = heatmap.load() # create the pixel map
for n,cell in enumerate(self.sortedcells):
alpha = float(n)/(len(self.sortedcells) - 1) if len(self.sortedcells) > 1 else 1
pix = cell['pix']
pi = 0
for py in range(self.resoY):
for px in range(self.resoX):
r = int(alpha*pix[pi][0] + 255*(1-alpha))
g = int(alpha*pix[pi][1] + 255*(1-alpha))
b = int(alpha*pix[pi][2] + 255*(1-alpha))
hpixels[int(cell['x'] * self.resoX + px), int(cell['y'] * self.resoY + py)] = (r,g,b)
pi += 1
heatmap.save(filename)
def samplePhotos(self):
startTime = dt.datetime.now()
images = []
maxImages = self.imageset.getMaxImages()
if self.verbose:
print("Sampling %d source images..." % (maxImages))
maxReso = max(self.resoX,self.resoY)
for idx in range(maxImages):
image = self.imageset.getRGBImage(idx, maxReso)
if image == None:
print("Bad Image!!")
w,h = image.size
badImage = False
if self.noborders:
rgb1 = image.getpixel((w/2,0)) # top center
rgb2 = image.getpixel((w/2,h-1)) # bot center
rgb3 = image.getpixel((0, h/2)) # left center
rgb4 = image.getpixel((w-1, h/2)) # right center
d1 = (rgb2[0] - rgb1[0])**2 + (rgb2[1] - rgb1[1])**2 + (rgb2[2] - rgb1[2])**2
d1 = d1 / 255.0
d2 = (rgb4[0] - rgb3[0])**2 + (rgb4[1] - rgb3[1])**2 + (rgb4[2] - rgb3[2])**2
d2 = d1 / 255.0
if d1 <= 0.007 or d2 <= 0.007 or float(w)/h >= 2 or float(h)/w >= 2:
badImage = True
if self.verbose:
print('.')
if not badImage:
i2 = image.resize((1,1), self.filter)
# FIX THIS
rgb = list(image.getdata())[0]
# print("RGB",rgb,image.size,self.imageset.makeFilePath(idx,''))
l = getHaeberliLuminance(rgb)
photo = {'idx':idx, 'l':l}
if self.hasForces:
photo['force'] = self.imageset.getImageForce(idx)
images.append(photo)
if self.verbose and (idx+1) % 500 == 0:
print("%d..." % (idx+1))
print("Got %d images, %.2f secs to sample" % (len(images), floatseconds(dt.datetime.now() - startTime)))
self.images = images
def subsamplePhoto(self,photo):
if not('pix' in photo) or len(photo['pix']) == 0:
photo['pix'] = []
key = self.imageset.getImageDupeID(photo['idx'])
if key not in self.dupeList:
self.dupeList[ key ] = []
for v in range(3):
if v > 0 and not self.usevars:
continue
image = self.getCroppedPhoto(photo['idx'], self.resoX, v)
# print("Resizing image to ",self.resoX,self.resoY)
image = image.resize((self.resoX, self.resoY), self.filter)
# !! convert to grayscale if necessary...
if self.grayscale:
image = image.convert('L').convert('RGB')
pix = list(image.getdata())
photo['pix'].append(pix)
def getCroppedPhoto(self, idx, resoX, var):
image = self.imageset.getRGBImage(idx,resoX)
if not image:
print("Problem getting image %d" % (idx))
return None
# crop to square
w,h = image.size
imgAspectRatio = float(w)/h
if var == 0:
if imgAspectRatio < self.tileAspectRatio:
nh = int(w / self.tileAspectRatio)
image = image.crop((0,(h-nh)/2,w,nh+(h-nh)/2))
elif imgAspectRatio > self.tileAspectRatio:
nw = int(h * self.tileAspectRatio)
image = image.crop(((w-nw)/2,0,nw+(w-nw)/2,h))
elif var == 1: # left/top
if imgAspectRatio < self.tileAspectRatio:
nh = int(w / self.tileAspectRatio)
image = image.crop((0,0,w,nh))
elif imgAspectRatio > self.tileAspectRatio:
nw = int(h * self.tileAspectRatio)
image = image.crop((0,0,nw,h))
else: # var == 2 # right/bot
if imgAspectRatio < self.tileAspectRatio:
nh = int(w / self.tileAspectRatio)
image = image.crop((0,(h-nh),w,nh+(h-nh)))
elif imgAspectRatio > self.tileAspectRatio:
nw = int(h * self.tileAspectRatio)
image = image.crop(((w-nw),0,nw+(w-nw),h))
return image
def buildLumIndex(self):
self.images = sorted(self.images, key=itemgetter('l'))
iIndex = []
lIdx = -1
n = 0
if self.verbose:
print("Sorting %d images for luminance" % (len(self.images)))
for j,img in enumerate(self.images):
if int(img['l']*255) != lIdx:
lIdx = int(img['l']*255)
while n <= lIdx:
iIndex.append(j)
n += 1
while n <= 255:
iIndex.append(j)
n += 1
if self.verbose:
print("Lumindex has %d entries" % (n))
self.iIndex = iIndex
def getMinDupeDist2(self, img, x, y):
mind = 100000000
key = self.imageset.getImageDupeID(img['idx'])
if not (key in self.dupeList):
return mind
dupeCoords = self.dupeList[key]
for dd in dupeCoords:
dx = (dd['x'] - x) ** 2
dy = (dd['y'] - y) ** 2
if dx == 0:
mind = dx
if dy == 0:
mind = dy
if dx+dy < mind:
mind = dx+dy
return mind
# this is where the CPU is grinding - should be optimized for speed
def cumDiff(self, pix1, pix2, upperBound):
# elegant but slow
# esum = sum([(p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2 + (p1[2] - p2[2]) ** 2 for p1,p2 in zip(pix1,pix2)])
esum = 0
for i in range(self.reso2): # note using zip here is slightly slower
esum += (pix1[i][0] - pix2[i][0]) ** 2 + (pix1[i][1] - pix2[i][1]) ** 2 + (pix1[i][2] - pix2[i][2]) ** 2
if upperBound > 0 and esum > upperBound:
break
return esum
def selectTiles(self):
if not self.images:
self.samplePhotos()
if not self.images:
return
if not self.sortedcells:
self.setupCells()
if not self.sortedcells:
return
numImages = len(self.images)
lastImageIdx = numImages-1
if self.verbose:
print("Selecting from %d images... %d cells" % (numImages, len(self.sortedcells)) )
self.buildLumIndex()
i = 0
lErr = 0
fimages = []
startTime = dt.datetime.now()
maxLumErr = 0
maxDiff = 0
for cell in self.sortedcells:
# puts "tile #{i} cell #{cell['x']} x #{cell['y']} " if self.verbose
cIdx = 0
minDiff = -1
flop = False
var = 0
gotOne = False
# this computes a number of slots based on a desired number of images which ranges from 300 to 100
# using extra candidates for images which are earlier in the array (and edgier)
lErr = 20 # worked this out experimentally - normal mode
if self.draft:
lErr = 5 # worked out experimentally
if self.accurate:
lErr = 40
# add bonus here based on edginess...
# lErr += 20 + cell['e'].to_f/self.reso2
while not gotOne:
ii = int(cell['l'] * 255)
mini = self.iIndex[max(0,ii-lErr)]
maxi = self.iIndex[min(255,ii + lErr)]
# puts " ii = #{ii} lErr = #{lErr} fmin-max = #{mini}-#{maxi}" if self.verbose
if maxi - mini < 256:
mini -= 128
maxi += 128
mini = max(0,mini)
if maxi > lastImageIdx or ii+lErr >= 255:
maxi = lastImageIdx
# puts " min-max = #{mini}-#{maxi}" if self.verbose
# tried various tricks here to reorder candidates to get more bounds clipping. didn't shorten execution time
# see ruby...
cands = list(range(mini,maxi+1))
for j in cands:
image = self.images[j]
# also tried optimization here to no avail...
# lumDiff = ((image['l']*255).to_i-ii).abs
# minPossibleDiff = lumDiff == 0? 0 : (self.resoX*self.resoY*3*(lumDiff-1))+1
# next if minDiff > 0 && minPossibleDiff > minDiff
if 'xx' in image and image['xx']:
continue
if self.getMinDupeDist2(image, cell['x'], cell['y']) < self.minDupeDist2:
continue
# pp image
self.subsamplePhoto(image) # subsample photo if we haven't yet
for v in range(3 if self.usevars else 1):
diff = self.cumDiff(image['pix'][v],cell['pix'],minDiff)
if diff < minDiff or minDiff == -1:
minDiff = diff
cIdx = j
flop = False
var = v
gotOne = True
if self.doflops:
diff = self.cumDiff(image['pix'][v],cell['fpix'],minDiff)
if diff < minDiff or minDiff == -1:
minDiff = diff
cIdx = j
flop = True
var = v
gotOne = True
# if no match found, widen range
lErr += 5
cPhoto = self.images[cIdx]
lumErr = abs(cPhoto['l'] - cell['l'])
maxLumErr = max(lumErr,maxLumErr)
maxDiff = max(minDiff,maxDiff)
cPhoto['i'] = cell['i']
cell['iIdx'] = len(fimages)
cell['img'] = cPhoto
cell['flop'] = flop
cell['var'] = var
cell['diff'] = minDiff
fimages.append(cPhoto)
# handle dupes
cPhoto['xx'] = not self.dupesOK
cPhoto['placed'] = True
dupeCoords = self.dupeList[ self.imageset.getImageDupeID(cPhoto['idx']) ]
drec = { 'x': cell['x'], 'y': cell['y'] }
dupeCoords.append(drec)
i += 1
if i % 100 == 0 and self.verbose:
print("%d..." % (i))
# end
print("Done selection pass, elapsed: %.2f seconds" % (floatseconds(dt.datetime.now() - startTime)))
print("Max Lum Err: %.1f Max Diff: %d" % (maxLumErr * 256, maxDiff))
if self.hasForces:
iq = [p for p in self.images if 'placed' not in p and p['force'] and 'pix' in p ]
print("Adding %d forces" % (len(iq)))
while len(iq) > 0:
image = iq.pop(0)
minDiff = -1
cIdx = -1
nbrPlacedForces = 0
#
for cell in self.sortedcells:
diff = self.cumDiff(image['pix'][0],cell['pix'], minDiff)
if ((diff < minDiff or minDiff == -1) and ((not cell['img']['force']) or diff < cell['diff'])):
minDiff = diff
cIdx = cell['i']
if cell['img']['force']:
nbrPlacedForces += 1
if (cIdx == -1):
print("No Cell match! minDiff = %d" % (minDiff))
else:
cell = self.cells[cIdx] # $self->{cells}->[$cIdx];
# if a force photo is already there, push it to end of queue
if cell['img']['force']:
iq.append(cell['img'])
print("Repush")
# place new photo there
cell['img'] = image;
cell['flop'] = False
image['i'] = cell['i']
cell['diff'] = minDiff
# renumber final images here
fimages = []
for cell in self.cells:
cell['iIdx'] = len(fimages)
fimages.append(cell['img'])
self.finalimages = fimages
self.images = []
self.iIndex = []
self.sortedcells = []
def selectTilesHMode(self):
if not self.images:
self.samplePhotos()
if not self.images:
return
self.setupCells()
if not self.cells:
return
numImages = len(self.images)
maxImages = min(len(self.images), self.hlimit)
nbrImagesMatched = 0
lastImageIdx = numImages-1
# self.buildLumIndexHMode2() # !!! MAKE LUM INDEX FOR CELLS...
unplacedImages = copy.copy(self.images) # may have to use deepcopy...
nbrPlaced = 0
hPass = 0
fimages = []
while len(unplacedImages) > 0 and nbrImagesMatched < maxImages:
hPass += 1
print("Pass " + hPass)
nbrUnplaced = 0
for i in range(min(self.hlimit,len(unplacedImages))):
print(" placing image %d" % (i))
image = unplacedImages[i]
if 'placed' in image:
continue
self.subsamplePhoto(image)
if 'cellIdx' in image:
cell1 = self.cells[image['cellIdx']]
overlaps = False
for j in range(i):
image2 = unplacedImages[j]
if not 'cellIdx' in image2:
continue
# 10% overlap check
cell2 = self.cells[image2['cellIdx']]
if self.cellsOverlap(cell1,cell2):
overlaps = True
break
if not overlaps:
fimages.append(image)
image['placed'] = True
print("Placed an image")
nbrImagesMatched += 1
if nbrImagesMatched >= maxImages:
break
cell1 = self.cells[image['cellIdx']]
for cell2 in self.cells:
if self.cellsOverlap(cell1,cell2):
cell2['used'] = True
continue
else:
print("Image %d overlaps, replacing" % (i))
nbrUnplaced += 1
minDiff = -1
gotOne = False
for ucrec in self.cells:
diff = self.cumDiff(image['pix'][0],ucrec['pix'],minDiff)
if diff < minDiff:
minDiff = diff
cIdx = ucrec['i']
flop = False
var = 0
gotOne = True
if gotOne:
image['cellIdx'] = cIdx
image['cDist'] = minDiff
# sort images so that better matches are first
unplacedImages = sorted( unplacedImages, key=itemgetter('cDist'))
# sort images so that better matches render last
fimages = sorted(fimages, key=itemgetter('cDist'), reverse=True)
self.finalimages = fimages
self.images = []
self.iIndex = []
def cellsOverlap(self, cell1,cell2):
x1 = cell1['x']
y1 = cell1['y']
x2 = cell2['x']
y2 = cell2['y']
w = self.resoX
h = self.resoY
return not(x1 >= x2 + self.resoX or x1 + self.resoX <= x2 or y1 >= y2 + self.resoY or y1 + self.resoY <= y2)
def loadData(self):
loadfilename = "%s/%s_%s_mosaick.json" % (self.json_path,self.rootname, self.basename)
sdata = json.loads(open(loadfilename).read())
self.basepic = sdata['basepic']
self.hcells = sdata['hcells']
self.vcells = sdata['vcells']
self.tileAspectRatio = sdata['tileAspectRatio']
self.targetAspectRatio = sdata['targetAspectRatio']
self.cells = sdata['cells']
# for cell in sdata['cells']:
# self.cells.append( {'x': cell['x'],
# 'y': cell['y'],
# 'iIdx': cell['iIdx'],
# 'var': cell['var'],
# 'avg': cell['avg'],
# 'flop': cell['flop'] })
self.finalimages = []
for img in sdata['finalimages']:
self.finalimages.append({ 'idx': img['idx'], 'desc': img['desc'] })
def saveData(self):
sdata = { 'basepic': self.basepic,
'hcells': self.hcells,
'vcells': self.vcells,
'tileAspectRatio': self.tileAspectRatio,
'targetAspectRatio': self.targetAspectRatio,
'cells': [],
'finalimages': [] }
sdata['cells'] = [{'x': cell['x'],
'y': cell['y'],
'iIdx': cell['iIdx'],
'var': cell['var'],
'avg': cell['avg'],
'flop': cell['flop']} for cell in self.cells]
for img in self.finalimages:
sdata['finalimages'].append({'idx':img['idx'],'desc':self.imageset.getImageDesc(img['idx']) })
savefilename = "%s/%s_%s_mosaick.json" % (self.json_path, self.rootname, self.basename)
open(savefilename, "w").write(json.dumps(sdata, indent=4))
def makeMosaic(self):
print("Making mosaic")
if not self.finalimages:
if self.load:
self.loadData()
elif self.hmode:
self.selectTilesHMode()
else:
self.selectTiles()
if len(self.finalimages) == 0:
return
if not self.hmode:
self.saveData()
if not self.cellsize:
if not self.minWidth or not self.minHeight:
print("No output dimension defined")
return
print("No explicit cellsize defined")
outputAspectRatio = self.minWidth / float(self.minHeight)
if self.targetAspectRatio < outputAspectRatio:
self.cellsize = int(self.minHeight / self.vcells / self.tileAspectRatio)
else:
self.cellsize = int(self.minWidth / self.hcells)
if self.hcells * self.cellsize < self.minWidth:
self.cellsize += 1
if self.vcells * int(self.cellsize * self.tileAspectRatio+0.5) < self.minWidth:
self.cellsize += 1
if self.filename == '':
self.filename = "%s/%s_%s_%d_x_%d_c%d%s.jpg" % (self.render_path, self.rootname, self.basename, self.hcells, self.vcells, self.cellsize,"_gray" if self.grayscale else "")
self.pngname = re.sub(r'\.\w+$', '.png', self.filename)
self.width = self.cellsize * self.hcells
self.height = (self.cellsize / self.tileAspectRatio) * self.vcells
cellsizeX = int(self.width / self.hcells + 0.5)
cellsizeY = int(self.height / self.vcells + 0.5)
width = cellsizeX * self.hcells
height = cellsizeY * self.vcells
if self.verbose:
print("Image Dimensions will be %d x %d (tiles = %dx%d pixels)" % (width, height, cellsizeX, cellsizeY))
maxCellsize = max(cellsizeX,cellsizeY)
# htmlName = re.sub(r'\.jpg', '.html', self.filename)
mosaic = Image.new("RGB", (width, height), "black")
draw = ImageDraw.Draw(mosaic)
# markup = ''
# markup += "<img src=\"%s\" usemap=\"#mozmap\" border=0>\n" % (self.filename)
# markup +="<map name=\"mozmap\">\n";
if not self.hmode:
for cell in self.cells:
imgdat = self.finalimages[cell['iIdx']]
x = cell['x']
y = cell['y']
img = self.getCroppedPhoto(imgdat['idx'], maxCellsize, cell['var'])
img = img.resize((cellsizeX, cellsizeY), self.filter)
if cell['flop'] and self.doflops:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
if self.mixin > 0 and self.tint: # !! this causes the paste to break
mask = Image.new("L",(cellsizeX,cellsizeY),int(self.mixin*255/100))
tint = Image.new("RGB", (cellsizeX, cellsizeY), tuple(cell['avg']))
img.paste(tint,(0,0),mask)
mosaic.paste(img, (x*cellsizeX,y*cellsizeY))
# markup += "<AREA SHAPE=rect COORDS=\"%d,%d,%d,%d\" href=\"%s\" TITLE=\"%s\">\n" % (
# x*cellsizeX,y*cellsizeY,(x+1)*cellsizeX,(y+1)*cellsizeY,
# self.imageset.getImageWebpage(imgdat['idx']),
# self.imageset.getImageDesc(imgdat['idx']) )
# perform annotations
if self.anno:
# text = Magick::Draw.new
pointsize = int(cellsizeX * 0.33)
pointsize = max(9,pointsize)
label = '%c%d' % (65+x,y+1)
draw.text((x*cellsizeX+1,y*cellsizeY+1),label,(255,255,255))
else:
# !! HMODE IN DEVELOPMENT - images are allowed to overlap
if self.hbase != '':
mosaic = Image.load(self.hbase).resize((width, height))
draw = ImageDraw.Draw(mosaic)
for i,imgdat in enumerate(self.finalimages):
cell = self.cells[imgdat['cellIdx']]
x = cell['x']
y = cell['y']
# markup += "<AREA SHAPE=rect COORDS=\"%d,%d,%d,%d\" href=\"%s\" TITLE=\"%s\">\n" % (
# x*cellsizeX,y*cellsizeY,(x+1)*cellsizeX,(y+1)*cellsizeY,
# self.imageset.getImageWebpage(imgdat['idx']),
# self.imageset.getImageDesc(imgdat['idx']) )
img = self.getCroppedPhoto(imgdat['idx'], maxCellsize, cell['var'])
img = img.resize((cellsizeX,cellsizeY))
if cell['flop'] and self.doflops:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
mosaic.paste(img, (x*cellsizeX/self.resoX,y*cellsizeY/self.resoY, x*cellsizeX/self.resoX+cellsizeX, y*cellsizeY/self.resoY+cellsizeY))
# mosaic.composite!(img,x*cellsizeX/self.resoX,y*cellsizeY/self.resoY,Magick::OverCompositeOp)
# markup += '</map>'
# output markup to file here...
# open(htmlName, "w").write(markup)
if self.mixin > 0 and not self.tint:
print("Mixing in %d%%..." % (self.mixin))
bgpic = Image.open(self.basepic).resize((width, height), self.filter)
mask = Image.new("L",(width,height),int(self.mixin*255/100))
mosaic.paste(bgpic,(0,0),mask)
if self.grayscale:
mosaic = mosaic.convert("L")
if self.png:
mosaic.save(self.pngname)
if self.verbose:
print("Saving JPEG %s" % (self.filename))
mosaic.save(self.filename, quality=self.quality)
def floatseconds(dt):
return (dt.seconds*1000000 + dt.microseconds)/1000000.0
# Utilities
def getHaeberliLuminance(rgb):
return (0.3086*rgb[0]+ 0.6094*rgb[1] + 0.0820*rgb[2])/255.0 # Haeberli luminance calc
def RGBtoHSV(rgb):
r = rgb[0] / 255.0
g = rgb[1] / 255.0
b = rgb[2] / 255.0
mx = max(r,g,b)
mn = min(r,g,b)
v = mx
s = (mx-mn)/mx if (mx != 0) else 0
h = 0
if s != 0:
d = mx - mn
if r == mx:
h = (g - b)/d
elif g == mx:
h = 2 + (b-r)/d
elif b == mx:
h = 4 + (r-g)/d
h *= 60
if (h < 0):
h += 360
return (h/360,s,v)