forked from oreillymedia/Learning-OpenCV-3_examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_18-01.cpp
173 lines (149 loc) · 5.92 KB
/
example_18-01.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
// Example 18-1. Reading a chessboard’s width and height, reading and collecting
// the requested number of views, and calibrating the camera
#include <iostream>
#include <opencv2/opencv.hpp>
using std::vector;
using std::cout;
using std::cerr;
using std::endl;
void help(char **argv) { // todo rewrite this
cout << "\n\n"
<< "Example 18-1:\nReading a chessboard’s width and height,\n"
<< " reading and collecting the requested number of views,\n"
<< " and calibrating the camera\n\n"
<< "Call:\n" << argv[0] << " <board_width> <board_height> <number_of_boards> <if_video,_delay_between_framee_capture> <image_scaling_factor>\n\n"
<< "Example:\n" << argv[0] << " 9 6 15 500 0.5\n"
<< "-- to use the checkerboard9x6.png provided\n\n"
<< " * First it reads in checker boards and calibrates itself\n"
<< " * Then it saves and reloads the calibration matricies\n"
<< " * Then it creates an undistortion map and finally\n"
<< " * It displays an undistorted image\n"
<< endl;
}
int main(int argc, char *argv[]) {
int n_boards = 0; // will be set by input list
float image_sf = 0.5f; // image scaling factor
float delay = 1.f;
int board_w = 0;
int board_h = 0;
if (argc < 4 || argc > 6) {
cout << "\nERROR: Wrong number of input parameters\n";
help(argv);
return -1;
}
board_w = atoi(argv[1]);
board_h = atoi(argv[2]);
n_boards = atoi(argv[3]);
if (argc > 4) {
delay = atof(argv[4]);
}
if (argc > 5) {
image_sf = atof(argv[5]);
}
int board_n = board_w * board_h;
cv::Size board_sz = cv::Size(board_w, board_h);
cv::VideoCapture capture(0);
if (!capture.isOpened()) {
cout << "\nCouldn't open the camera\n";
help(argv);
return -1;
}
// ALLOCATE STORAGE
//
vector<vector<cv::Point2f> > image_points;
vector<vector<cv::Point3f> > object_points;
// Capture corner views: loop until we've got n_boards successful
// captures (all corners on the board are found).
//
double last_captured_timestamp = 0;
cv::Size image_size;
while (image_points.size() < (size_t)n_boards) {
cv::Mat image0, image;
capture >> image0;
image_size = image0.size();
cv::resize(image0, image, cv::Size(), image_sf, image_sf, cv::INTER_LINEAR);
// Find the board
//
vector<cv::Point2f> corners;
bool found = cv::findChessboardCorners(image, board_sz, corners);
// Draw it
//
drawChessboardCorners(image, board_sz, corners, found);
// If we got a good board, add it to our data
//
double timestamp = static_cast<double>(clock()) / CLOCKS_PER_SEC;
if (found && timestamp - last_captured_timestamp > 1) {
last_captured_timestamp = timestamp;
image ^= cv::Scalar::all(255);
cv::Mat mcorners(corners);
// do not copy the data
mcorners *= (1.0 / image_sf);
// scale the corner coordinates
image_points.push_back(corners);
object_points.push_back(vector<cv::Point3f>());
vector<cv::Point3f> &opts = object_points.back();
opts.resize(board_n);
for (int j = 0; j < board_n; j++) {
opts[j] = cv::Point3f(static_cast<float>(j / board_w),
static_cast<float>(j % board_w), 0.0f);
}
cout << "Collected our " << static_cast<uint>(image_points.size())
<< " of " << n_boards << " needed chessboard images\n" << endl;
}
cv::imshow("Calibration", image);
// show in color if we did collect the image
if ((cv::waitKey(30) & 255) == 27)
return -1;
}
// END COLLECTION WHILE LOOP.
cv::destroyWindow("Calibration");
cout << "\n\n*** CALIBRATING THE CAMERA...\n" << endl;
// CALIBRATE THE CAMERA!
//
cv::Mat intrinsic_matrix, distortion_coeffs;
double err = cv::calibrateCamera(
object_points, image_points, image_size, intrinsic_matrix,
distortion_coeffs, cv::noArray(), cv::noArray(),
cv::CALIB_ZERO_TANGENT_DIST | cv::CALIB_FIX_PRINCIPAL_POINT);
// SAVE THE INTRINSICS AND DISTORTIONS
cout << " *** DONE!\n\nReprojection error is " << err
<< "\nStoring Intrinsics.xml and Distortions.xml files\n\n";
cv::FileStorage fs("intrinsics.xml", cv::FileStorage::WRITE);
fs << "image_width" << image_size.width << "image_height" << image_size.height
<< "camera_matrix" << intrinsic_matrix << "distortion_coefficients"
<< distortion_coeffs;
fs.release();
// EXAMPLE OF LOADING THESE MATRICES BACK IN:
fs.open("intrinsics.xml", cv::FileStorage::READ);
cout << "\nimage width: " << static_cast<int>(fs["image_width"]);
cout << "\nimage height: " << static_cast<int>(fs["image_height"]);
cv::Mat intrinsic_matrix_loaded, distortion_coeffs_loaded;
fs["camera_matrix"] >> intrinsic_matrix_loaded;
fs["distortion_coefficients"] >> distortion_coeffs_loaded;
cout << "\nintrinsic matrix:" << intrinsic_matrix_loaded;
cout << "\ndistortion coefficients: " << distortion_coeffs_loaded << endl;
// Build the undistort map which we will use for all
// subsequent frames.
//
cv::Mat map1, map2;
cv::initUndistortRectifyMap(intrinsic_matrix_loaded, distortion_coeffs_loaded,
cv::Mat(), intrinsic_matrix_loaded, image_size,
CV_16SC2, map1, map2);
// Just run the camera to the screen, now showing the raw and
// the undistorted image.
//
for (;;) {
cv::Mat image, image0;
capture >> image0;
if (image0.empty()) {
break;
}
cv::remap(image0, image, map1, map2, cv::INTER_LINEAR,
cv::BORDER_CONSTANT, cv::Scalar());
cv::imshow("Undistorted", image);
if ((cv::waitKey(30) & 255) == 27) {
break;
}
}
return 0;
}