You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
~/.conda/envs/ml-devenv2/lib/python3.8/site-packages/torch/nn/modules/conv.py in reset_parameters(self)
84
85 def reset_parameters(self) -> None:
---> 86 init.kaiming_uniform_(self.weight, a=math.sqrt(5))
87 if self.bias is not None:
88 fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
~/.conda/envs/ml-devenv2/lib/python3.8/site-packages/torch/nn/init.py in kaiming_uniform_(tensor, a, mode, nonlinearity)
379 fan = _calculate_correct_fan(tensor, mode)
380 gain = calculate_gain(nonlinearity, a)
--> 381 std = gain / math.sqrt(fan)
382 bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
383 with torch.no_grad():
ZeroDivisionError: float division by zero
The text was updated successfully, but these errors were encountered:
vit = VisionTransformer(CONFIGS['R50-ViT-B_16'], zero_head=False, img_size=200)
leads to "float division by zero" exception:
ZeroDivisionError Traceback (most recent call last)
in
----> 1 vit = VisionTransformer(CONFIGS['R50-ViT-B_16'], zero_head=False, img_size=200)
ViT-pytorch/models/modeling.py in init(self, config, img_size, num_classes, zero_head, vis)
267 self.classifier = config.classifier
268
--> 269 self.transformer = Transformer(config, img_size, vis)
270 self.head = Linear(config.hidden_size, num_classes)
271
ViT-pytorch/models/modeling.py in init(self, config, img_size, vis)
251 def init(self, config, img_size, vis):
252 super(Transformer, self).init()
--> 253 self.embeddings = Embeddings(config, img_size=img_size)
254 self.encoder = Encoder(config, vis)
255
ViT-pytorch/models/modeling.py in init(self, config, img_size, in_channels)
144 width_factor=config.resnet.width_factor)
145 in_channels = self.hybrid_model.width * 16
--> 146 self.patch_embeddings = Conv2d(in_channels=in_channels,
147 out_channels=config.hidden_size,
148 kernel_size=patch_size,
~/.conda/envs/ml-devenv2/lib/python3.8/site-packages/torch/nn/modules/conv.py in init(self, in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode)
408 padding = _pair(padding)
409 dilation = _pair(dilation)
--> 410 super(Conv2d, self).init(
411 in_channels, out_channels, kernel_size, stride, padding, dilation,
412 False, _pair(0), groups, bias, padding_mode)
~/.conda/envs/ml-devenv2/lib/python3.8/site-packages/torch/nn/modules/conv.py in init(self, in_channels, out_channels, kernel_size, stride, padding, dilation, transposed, output_padding, groups, bias, padding_mode)
81 else:
82 self.register_parameter('bias', None)
---> 83 self.reset_parameters()
84
85 def reset_parameters(self) -> None:
~/.conda/envs/ml-devenv2/lib/python3.8/site-packages/torch/nn/modules/conv.py in reset_parameters(self)
84
85 def reset_parameters(self) -> None:
---> 86 init.kaiming_uniform_(self.weight, a=math.sqrt(5))
87 if self.bias is not None:
88 fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
~/.conda/envs/ml-devenv2/lib/python3.8/site-packages/torch/nn/init.py in kaiming_uniform_(tensor, a, mode, nonlinearity)
379 fan = _calculate_correct_fan(tensor, mode)
380 gain = calculate_gain(nonlinearity, a)
--> 381 std = gain / math.sqrt(fan)
382 bound = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
383 with torch.no_grad():
ZeroDivisionError: float division by zero
The text was updated successfully, but these errors were encountered: