-
Notifications
You must be signed in to change notification settings - Fork 4
/
app.py
187 lines (143 loc) Β· 5.89 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import os
from typing import Optional, Tuple
import gradio as gr
import pandas as pd
from buster.completers import Completion
# from embed_docs import embed_rtd_website
# from rtd_scraper.scrape_rtd import scrape_rtd
from embed_docs import embed_documents
import cfg
from cfg import setup_buster
# Typehint for chatbot history
ChatHistory = list[list[Optional[str], Optional[str]]]
# Because this is a one-click deploy app, we will be relying on env. variables being set
openai_api_key = os.getenv("OPENAI_API_KEY") # Mandatory for app to work
readthedocs_url = os.getenv("READTHEDOCS_URL") # Mandatory for app to work as intended
readthedocs_version = os.getenv("READTHEDOCS_VERSION")
if openai_api_key is None:
print(
"Warning: No OPENAI_API_KEY detected. Set it with 'export OPENAI_API_KEY=sk-...'."
)
if readthedocs_url is None:
raise ValueError(
"No READTHEDOCS_URL detected. Set it with e.g. 'export READTHEDOCS_URL=https://orion.readthedocs.io/'"
)
if readthedocs_version is None:
print(
"""
Warning: No READTHEDOCS_VERSION detected. If multiple versions of the docs exist, they will all be scraped.
Set it with e.g. 'export READTHEDOCS_VERSION=en/stable'
"""
)
# Override to put it anywhere
save_directory = "outputs/"
# scrape and embed content from readthedocs website
# You only need to embed the first time the app runs, comment it out to skip
embed_documents(
homepage_url=readthedocs_url,
save_directory=save_directory,
target_version=readthedocs_version,
)
# Setup RAG agent
buster = setup_buster(cfg.buster_cfg)
# Setup Gradio app
def add_user_question(
user_question: str, chat_history: Optional[ChatHistory] = None
) -> ChatHistory:
"""Adds a user's question to the chat history.
If no history is provided, the first element of the history will be the user conversation.
"""
if chat_history is None:
chat_history = []
chat_history.append([user_question, None])
return chat_history
def format_sources(matched_documents: pd.DataFrame) -> str:
if len(matched_documents) == 0:
return ""
matched_documents.similarity_to_answer = (
matched_documents.similarity_to_answer * 100
)
# drop duplicate pages (by title), keep highest ranking ones
matched_documents = matched_documents.sort_values(
"similarity_to_answer", ascending=False
).drop_duplicates("title", keep="first")
documents_answer_template: str = "π Here are the sources I used to answer your question:\n\n{documents}\n\n{footnote}"
document_template: str = "[π {document.title}]({document.url}), relevance: {document.similarity_to_answer:2.1f} %"
documents = "\n".join(
[
document_template.format(document=document)
for _, document in matched_documents.iterrows()
]
)
footnote: str = "I'm a bot π€ and not always perfect."
return documents_answer_template.format(documents=documents, footnote=footnote)
def add_sources(history, completion):
if completion.answer_relevant:
formatted_sources = format_sources(completion.matched_documents)
history.append([None, formatted_sources])
return history
def chat(chat_history: ChatHistory) -> Tuple[ChatHistory, Completion]:
"""Answer a user's question using retrieval augmented generation."""
# We assume that the question is the user's last interaction
user_input = chat_history[-1][0]
# Do retrieval + augmented generation with buster
completion = buster.process_input(user_input)
# Stream tokens one at a time to the user
chat_history[-1][1] = ""
for token in completion.answer_generator:
chat_history[-1][1] += token
yield chat_history, completion
demo = gr.Blocks()
with demo:
with gr.Row():
gr.Markdown("<h1><center>RAGTheDocs</center></h1>")
gr.Markdown(
"""
## About
[RAGTheDocs](https://github.com/jerpint/RAGTheDocs) allows you to ask questions about any documentation hosted on readthedocs.
Simply clone this space and set the environment variables:
* `OPENAI_API_KEY` (required): Needed for the app to work, e.g. `sk-...`
* `READTHEDOCS_URL` (required): The url of the website you are interested in scraping (must be built with
sphinx/readthedocs). e.g. `https://orion.readthedocs.io`
* `READTHEDOCS_VERSION` (optional): This is important if there exist multiple versions of the docs (e.g. `en/v0.2.7` or `en/latest`). If left empty, it will scrape all available versions (there can be many for open-source projects!).
Try it out by asking a question below π about [orion](https://orion.readthedocs.io/), an open-source hyperparameter optimization library.
## How it works
This app uses [Buster π€](https://github.com/jerpint/buster) and ChatGPT to search the docs for relevant info and
answer questions.
View the code on the [project homepage](https://github.com/jerpint/RAGTheDocs)
"""
)
chatbot = gr.Chatbot()
with gr.Row():
question = gr.Textbox(
label="What's your question?",
placeholder="Type your question here...",
lines=1,
)
submit = gr.Button(value="Send", variant="secondary")
examples = gr.Examples(
examples=[
"How can I install the library?",
"What dependencies are required?",
"Give a brief overview of the library.",
],
inputs=question,
)
response = gr.State()
# fmt: off
gr.on(
triggers=[submit.click, question.submit],
fn=add_user_question,
inputs=[question],
outputs=[chatbot]
).then(
chat,
inputs=[chatbot],
outputs=[chatbot, response]
).then(
add_sources,
inputs=[chatbot, response],
outputs=[chatbot]
)
demo.queue(concurrency_count=8)
demo.launch(share=False)