-
Notifications
You must be signed in to change notification settings - Fork 679
/
Copy pathatan.c
173 lines (164 loc) · 5.01 KB
/
atan.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/* Copyright JS Foundation and other contributors, http://js.foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is based on work under the following copyright and permission
* notice:
*
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*
* @(#)s_atan.c 1.3 95/01/18
*/
#include "jerry-math-internal.h"
/* atan(x)
*
* Method:
* 1. Reduce x to positive by atan(x) = -atan(-x).
* 2. According to the integer k=4t+0.25 chopped, t=x, the argument
* is further reduced to one of the following intervals and the
* arctangent of t is evaluated by the corresponding formula:
*
* [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
* [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
* [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
* [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
* [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/
static const double atanhi[] = {
4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
};
static const double atanlo[] = {
2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
};
#define aT0 3.33333333333329318027e-01 /* 0x3FD55555, 0x5555550D */
#define aT1 -1.99999999998764832476e-01 /* 0xBFC99999, 0x9998EBC4 */
#define aT2 1.42857142725034663711e-01 /* 0x3FC24924, 0x920083FF */
#define aT3 -1.11111104054623557880e-01 /* 0xBFBC71C6, 0xFE231671 */
#define aT4 9.09088713343650656196e-02 /* 0x3FB745CD, 0xC54C206E */
#define aT5 -7.69187620504482999495e-02 /* 0xBFB3B0F2, 0xAF749A6D */
#define aT6 6.66107313738753120669e-02 /* 0x3FB10D66, 0xA0D03D51 */
#define aT7 -5.83357013379057348645e-02 /* 0xBFADDE2D, 0x52DEFD9A */
#define aT8 4.97687799461593236017e-02 /* 0x3FA97B4B, 0x24760DEB */
#define aT9 -3.65315727442169155270e-02 /* 0xBFA2B444, 0x2C6A6C2F */
#define aT10 1.62858201153657823623e-02 /* 0x3F90AD3A, 0xE322DA11 */
#define one 1.0
#define huge 1.0e300
double
atan (double x)
{
double w, s1, s2, z;
int ix, hx, id;
hx = __HI (x);
ix = hx & 0x7fffffff;
if (ix >= 0x44100000) /* if |x| >= 2^66 */
{
if (ix > 0x7ff00000 || (ix == 0x7ff00000 && (__LO (x) != 0)))
{
return x + x; /* NaN */
}
if (hx > 0)
{
return atanhi[3] + atanlo[3];
}
else
{
return -atanhi[3] - atanlo[3];
}
}
if (ix < 0x3fdc0000) /* |x| < 0.4375 */
{
if (ix < 0x3e200000) /* |x| < 2^-29 */
{
if (huge + x > one) /* raise inexact */
{
return x;
}
}
id = -1;
}
else
{
x = fabs (x);
if (ix < 0x3ff30000) /* |x| < 1.1875 */
{
if (ix < 0x3fe60000) /* 7/16 <= |x| < 11/16 */
{
id = 0;
x = (2.0 * x - one) / (2.0 + x);
}
else /* 11/16 <= |x| < 19/16 */
{
id = 1;
x = (x - one) / (x + one);
}
}
else
{
if (ix < 0x40038000) /* |x| < 2.4375 */
{
id = 2;
x = (x - 1.5) / (one + 1.5 * x);
}
else /* 2.4375 <= |x| < 2^66 */
{
id = 3;
x = -1.0 / x;
}
}
}
/* end of argument reduction */
z = x * x;
w = z * z;
/* break sum from i=0 to 10 aT[i] z**(i+1) into odd and even poly */
s1 = z * (aT0 + w * (aT2 + w * (aT4 + w * (aT6 + w * (aT8 + w * aT10)))));
s2 = w * (aT1 + w * (aT3 + w * (aT5 + w * (aT7 + w * aT9))));
if (id < 0)
{
return x - x * (s1 + s2);
}
else
{
z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x);
return (hx < 0) ? -z : z;
}
} /* atan */
#undef aT0
#undef aT1
#undef aT2
#undef aT3
#undef aT4
#undef aT5
#undef aT6
#undef aT7
#undef aT8
#undef aT9
#undef aT10
#undef one
#undef huge