-
Notifications
You must be signed in to change notification settings - Fork 679
/
Copy pathlog1p.c
244 lines (238 loc) · 6.66 KB
/
log1p.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/* Copyright JS Foundation and other contributors, http://js.foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is based on work under the following copyright and permission
* notice:
*
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*
* @(#)s_log1p.c 5.1 93/09/24
*/
#include "jerry-math-internal.h"
/* log1p(x)
* Method :
* 1. Argument Reduction: find k and f such that
* 1+x = 2^k * (1+f),
* where sqrt(2)/2 < 1+f < sqrt(2) .
*
* Note. If k=0, then f=x is exact. However, if k!=0, then f
* may not be representable exactly. In that case, a correction
* term is need. Let u=1+x rounded. Let c = (1+x)-u, then
* log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
* and add back the correction term c/u.
* (Note: when x > 2**53, one can simply return log(x))
*
* 2. Approximation of log1p(f).
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
* = 2s + s*R
* We use a special Reme algorithm on [0,0.1716] to generate
* a polynomial of degree 14 to approximate R The maximum error
* of this polynomial approximation is bounded by 2**-58.45. In
* other words,
* 2 4 6 8 10 12 14
* R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
* (the values of Lp1 to Lp7 are listed in the program)
* and
* | 2 14 | -58.45
* | Lp1*s +...+Lp7*s - R(z) | <= 2
* | |
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
* In order to guarantee error in log below 1ulp, we compute log
* by
* log1p(f) = f - (hfsq - s*(hfsq+R)).
*
* 3. Finally, log1p(x) = k*ln2 + log1p(f).
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
* Here ln2 is split into two floating point number:
* ln2_hi + ln2_lo,
* where n*ln2_hi is always exact for |n| < 2000.
*
* Special cases:
* log1p(x) is NaN with signal if x < -1 (including -INF) ;
* log1p(+INF) is +INF; log1p(-1) is -INF with signal;
* log1p(NaN) is that NaN with no signal.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*
* Note: Assuming log() return accurate answer, the following
* algorithm can be used to compute log1p(x) to within a few ULP:
*
* u = 1+x;
* if(u==1.0) return x ; else
* return log(u)*(x/(u-1.0));
*
* See HP-15C Advanced Functions Handbook, p.193.
*/
#define zero 0.0
#define ln2_hi 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
#define ln2_lo 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
#define two54 1.80143985094819840000e+16 /* 43500000 00000000 */
#define Lp1 6.666666666666735130e-01 /* 3FE55555 55555593 */
#define Lp2 3.999999999940941908e-01 /* 3FD99999 9997FA04 */
#define Lp3 2.857142874366239149e-01 /* 3FD24924 94229359 */
#define Lp4 2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */
#define Lp5 1.818357216161805012e-01 /* 3FC74664 96CB03DE */
#define Lp6 1.531383769920937332e-01 /* 3FC39A09 D078C69F */
#define Lp7 1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */
double
log1p (double x)
{
double hfsq, f, c, s, z, R;
double_accessor u;
int k, hx, hu, ax;
hx = __HI (x);
ax = hx & 0x7fffffff;
c = 0;
k = 1;
if (hx < 0x3FDA827A)
{
/* 1+x < sqrt(2)+ */
if (ax >= 0x3ff00000)
{
/* x <= -1.0 */
if (x == -1.0)
{
/* log1p(-1) = -inf */
return -INFINITY;
}
else
{
/* log1p(x<-1) = NaN */
return NAN;
}
}
if (ax < 0x3e200000)
{ /* |x| < 2**-29 */
if ((two54 + x > zero) /* raise inexact */
&& (ax < 0x3c900000)) /* |x| < 2**-54 */
{
return x;
}
else
{
return x - x * x * 0.5;
}
}
if ((hx > 0) || hx <= ((int) 0xbfd2bec4))
{
/* sqrt(2)/2- <= 1+x < sqrt(2)+ */
k = 0;
f = x;
hu = 1;
}
}
if (hx >= 0x7ff00000)
{
return x + x;
}
if (k != 0)
{
if (hx < 0x43400000)
{
u.dbl = 1.0 + x;
hu = u.as_int.hi;
k = (hu >> 20) - 1023;
c = (k > 0) ? 1.0 - (u.dbl - x) : x - (u.dbl - 1.0); /* correction term */
c /= u.dbl;
}
else
{
u.dbl = x;
hu = u.as_int.hi;
k = (hu >> 20) - 1023;
c = 0;
}
hu &= 0x000fffff;
/*
* The approximation to sqrt(2) used in thresholds is not
* critical. However, the ones used above must give less
* strict bounds than the one here so that the k==0 case is
* never reached from here, since here we have committed to
* using the correction term but don't use it if k==0.
*/
if (hu < 0x6a09e)
{
/* u ~< sqrt(2) */
u.as_int.hi = hu | 0x3ff00000; /* normalize u */
}
else
{
k += 1;
u.as_int.hi = hu | 0x3fe00000; /* normalize u/2 */
hu = (0x00100000 - hu) >> 2;
}
f = u.dbl - 1.0;
}
hfsq = 0.5 * f * f;
if (hu == 0)
{
/* |f| < 2**-20 */
if (f == zero)
{
if (k == 0)
{
return zero;
}
else
{
c += k * ln2_lo;
return k * ln2_hi + c;
}
}
R = hfsq * (1.0 - 0.66666666666666666 * f);
if (k == 0)
{
return f - R;
}
else
{
return k * ln2_hi - ((R - (k * ln2_lo + c)) - f);
}
}
s = f / (2.0 + f);
z = s * s;
R = z * (Lp1 + z * (Lp2 + z * (Lp3 + z * (Lp4 + z * (Lp5 + z * (Lp6 + z * Lp7))))));
if (k == 0)
{
return f - (hfsq - s * (hfsq + R));
}
else
{
return k * ln2_hi - ((hfsq - (s * (hfsq + R) + (k * ln2_lo + c))) - f);
}
} /* log1p */
#undef zero
#undef ln2_hi
#undef ln2_lo
#undef two54
#undef Lp1
#undef Lp2
#undef Lp3
#undef Lp4
#undef Lp5
#undef Lp6
#undef Lp7