-
Notifications
You must be signed in to change notification settings - Fork 679
/
Copy pathsinh.c
115 lines (105 loc) · 2.89 KB
/
sinh.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
/* Copyright JS Foundation and other contributors, http://js.foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is based on work under the following copyright and permission
* notice:
*
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*
* @(#)e_sinh.c 1.3 95/01/18
*/
#include "jerry-math-internal.h"
/* __sinh(x)
* Method:
* mathematically sinh(x) if defined to be (exp(x) - exp(-x)) / 2
* 1. Replace x by |x| (sinh(-x) = -sinh(x)).
* 2.
* E + E/(E+1)
* 0 <= x <= 22 : sinh(x) := -------------, E = expm1(x)
* 2
*
* 22 <= x <= lnovft : sinh(x) := exp(x) / 2
* lnovft <= x <= ln2ovft: sinh(x) := exp(x / 2) / 2 * exp(x / 2)
* ln2ovft < x : sinh(x) := x * shuge (overflow)
*
* Special cases:
* sinh(x) is |x| if x is +INF, -INF, or NaN.
* only sinh(0) = 0 is exact for finite x.
*/
#define one 1.0
#define half 0.5
#define shuge 1.0e307
double
sinh (double x)
{
double t, w, h;
int ix, jx;
unsigned lx;
/* High word of |x|. */
jx = __HI (x);
ix = jx & 0x7fffffff;
/* x is INF or NaN */
if (ix >= 0x7ff00000)
{
return x + x;
}
h = 0.5;
if (jx < 0)
{
h = -h;
}
/* |x| in [0,22], return sign(x) * 0.5 * (E + E / (E + 1))) */
if (ix < 0x40360000)
{
/* |x| < 22 */
if (ix < 0x3e300000)
{
/* |x| < 2**-28 */
if (shuge + x > one)
{
/* sinh(tiny) = tiny with inexact */
return x;
}
}
t = expm1 (fabs (x));
if (ix < 0x3ff00000)
{
return h * (2.0 * t - t * t / (t + one));
}
return h * (t + t / (t + one));
}
/* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
if (ix < 0x40862E42)
{
return h * exp (fabs (x));
}
/* |x| in [log(maxdouble), overflowthresold] */
lx = ((1 >> 29) + (unsigned int) x);
if (ix < 0x408633CE || ((ix == 0x408633ce) && (lx <= (unsigned) 0x8fb9f87d)))
{
w = exp (0.5 * fabs (x));
t = h * w;
return t * w;
}
/* |x| > overflowthresold, sinh(x) overflow */
return x * shuge;
} /* sinh */
#undef one
#undef half
#undef huge