forked from abeardear/pytorch-YOLO-v1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathyoloLoss.py
executable file
·130 lines (110 loc) · 5.71 KB
/
yoloLoss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#encoding:utf-8
#
#created by xiongzihua 2017.12.26
#
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class yoloLoss(nn.Module):
def __init__(self,S,B,l_coord,l_noobj):
super(yoloLoss,self).__init__()
self.S = S
self.B = B
self.l_coord = l_coord
self.l_noobj = l_noobj
def compute_iou(self, box1, box2):
'''Compute the intersection over union of two set of boxes, each box is [x1,y1,x2,y2].
Args:
box1: (tensor) bounding boxes, sized [N,4].
box2: (tensor) bounding boxes, sized [M,4].
Return:
(tensor) iou, sized [N,M].
'''
N = box1.size(0)
M = box2.size(0)
lt = torch.max(
box1[:,:2].unsqueeze(1).expand(N,M,2), # [N,2] -> [N,1,2] -> [N,M,2]
box2[:,:2].unsqueeze(0).expand(N,M,2), # [M,2] -> [1,M,2] -> [N,M,2]
)
rb = torch.min(
box1[:,2:].unsqueeze(1).expand(N,M,2), # [N,2] -> [N,1,2] -> [N,M,2]
box2[:,2:].unsqueeze(0).expand(N,M,2), # [M,2] -> [1,M,2] -> [N,M,2]
)
wh = rb - lt # [N,M,2]
wh[wh<0] = 0 # clip at 0
inter = wh[:,:,0] * wh[:,:,1] # [N,M]
area1 = (box1[:,2]-box1[:,0]) * (box1[:,3]-box1[:,1]) # [N,]
area2 = (box2[:,2]-box2[:,0]) * (box2[:,3]-box2[:,1]) # [M,]
area1 = area1.unsqueeze(1).expand_as(inter) # [N,] -> [N,1] -> [N,M]
area2 = area2.unsqueeze(0).expand_as(inter) # [M,] -> [1,M] -> [N,M]
iou = inter / (area1 + area2 - inter)
return iou
def forward(self,pred_tensor,target_tensor):
'''
pred_tensor: (tensor) size(batchsize,S,S,Bx5+20=30) [x,y,w,h,c]
target_tensor: (tensor) size(batchsize,S,S,30)
'''
N = pred_tensor.size()[0]
coo_mask = target_tensor[:,:,:,4] > 0
noo_mask = target_tensor[:,:,:,4] == 0
coo_mask = coo_mask.unsqueeze(-1).expand_as(target_tensor)
noo_mask = noo_mask.unsqueeze(-1).expand_as(target_tensor)
coo_pred = pred_tensor[coo_mask].view(-1,30)
box_pred = coo_pred[:,:10].contiguous().view(-1,5) #box[x1,y1,w1,h1,c1]
class_pred = coo_pred[:,10:] #[x2,y2,w2,h2,c2]
coo_target = target_tensor[coo_mask].view(-1,30)
box_target = coo_target[:,:10].contiguous().view(-1,5)
class_target = coo_target[:,10:]
# compute not contain obj loss
noo_pred = pred_tensor[noo_mask].view(-1,30)
noo_target = target_tensor[noo_mask].view(-1,30)
noo_pred_mask = torch.cuda.ByteTensor(noo_pred.size())
noo_pred_mask.zero_()
noo_pred_mask[:,4]=1;noo_pred_mask[:,9]=1
noo_pred_c = noo_pred[noo_pred_mask] #noo pred只需要计算 c 的损失 size[-1,2]
noo_target_c = noo_target[noo_pred_mask]
nooobj_loss = F.mse_loss(noo_pred_c,noo_target_c,size_average=False)
#compute contain obj loss
coo_response_mask = torch.cuda.ByteTensor(box_target.size())
coo_response_mask.zero_()
coo_not_response_mask = torch.cuda.ByteTensor(box_target.size())
coo_not_response_mask.zero_()
box_target_iou = torch.zeros(box_target.size()).cuda()
for i in range(0,box_target.size()[0],2): #choose the best iou box
box1 = box_pred[i:i+2]
box1_xyxy = Variable(torch.FloatTensor(box1.size()))
box1_xyxy[:,:2] = box1[:,:2]/14. -0.5*box1[:,2:4]
box1_xyxy[:,2:4] = box1[:,:2]/14. +0.5*box1[:,2:4]
box2 = box_target[i].view(-1,5)
box2_xyxy = Variable(torch.FloatTensor(box2.size()))
box2_xyxy[:,:2] = box2[:,:2]/14. -0.5*box2[:,2:4]
box2_xyxy[:,2:4] = box2[:,:2]/14. +0.5*box2[:,2:4]
iou = self.compute_iou(box1_xyxy[:,:4],box2_xyxy[:,:4]) #[2,1]
max_iou,max_index = iou.max(0)
max_index = max_index.data.cuda()
coo_response_mask[i+max_index]=1
coo_not_response_mask[i+1-max_index]=1
#####
# we want the confidence score to equal the
# intersection over union (IOU) between the predicted box
# and the ground truth
#####
box_target_iou[i+max_index,torch.LongTensor([4]).cuda()] = (max_iou).data.cuda()
box_target_iou = Variable(box_target_iou).cuda()
#1.response loss
box_pred_response = box_pred[coo_response_mask].view(-1,5)
box_target_response_iou = box_target_iou[coo_response_mask].view(-1,5)
box_target_response = box_target[coo_response_mask].view(-1,5)
contain_loss = F.mse_loss(box_pred_response[:,4],box_target_response_iou[:,4],size_average=False)
loc_loss = F.mse_loss(box_pred_response[:,:2],box_target_response[:,:2],size_average=False) + F.mse_loss(torch.sqrt(box_pred_response[:,2:4]),torch.sqrt(box_target_response[:,2:4]),size_average=False)
#2.not response loss
box_pred_not_response = box_pred[coo_not_response_mask].view(-1,5)
box_target_not_response = box_target[coo_not_response_mask].view(-1,5)
box_target_not_response[:,4]= 0
#not_contain_loss = F.mse_loss(box_pred_response[:,4],box_target_response[:,4],size_average=False)
#I believe this bug is simply a typo
not_contain_loss = F.mse_loss(box_pred_not_response[:,4], box_target_not_response[:,4],size_average=False)
#3.class loss
class_loss = F.mse_loss(class_pred,class_target,size_average=False)
return (self.l_coord*loc_loss + 2*contain_loss + not_contain_loss + self.l_noobj*nooobj_loss + class_loss)/N