forked from emit-sds/emit-ghg
-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_plumeid_ghg.py
97 lines (75 loc) · 3.59 KB
/
run_plumeid_ghg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#! /usr/bin/env python
#
# Copyright 2023 California Institute of Technology
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Authors: Philip G Brodrick, [email protected]
import argparse
import subprocess
import os
from utils import envi_header
from glob import glob
import json
import numpy as np
def main(input_args=None):
parser = argparse.ArgumentParser(description="Robust MF")
parser.add_argument('output_dir', type=str, metavar='OUTPUT', help='path to input image')
parser.add_argument('--co2', action='store_true', help='flag to indicate whether to run co2')
parser.add_argument('--methane_metadata', type=str, default='visions_delivery/combined_plume_metadata.json', help='file_with_idd_methane_plumes')
args = parser.parse_args(input_args)
plumedict = json.load(open(args.methane_metadata,'r'))
fids = [x['properties']['Scene FID'] for x in plumedict['features']]
un_fids = np.unique(fids)
rdn_files = []
for fid in un_fids:
glist = glob(f'/beegfs/store/emit/ops/data/acquisitions/{fid[4:12]}/{fid}/l1b/*_rdn_b0106_v01.img')
if len(glist) > 0:
rdn_files.append(glist[0])
else:
rdn_files.append(None)
for _fid in range(len(rdn_files)-1,-1,-1):
if rdn_files[_fid] is None:
rdn_files.pop(_fid)
fids.pop(_fid)
un_fids = np.unique(fids)
obs_files = [x.replace('rdn','obs') for x in rdn_files]
loc_files = [x.replace('rdn','loc') for x in rdn_files]
glt_files = [x.replace('rdn','glt') for x in rdn_files]
l1b_bandmask_files = [x.replace('rdn','bandmask') for x in rdn_files]
l2a_mask_files = [x.replace('l1b','l2a').replace('rdn','mask') for x in rdn_files]
state_files = [x.replace('l1b','l2a').replace('rdn','statesubs') for x in rdn_files]
state_files = [x if os.path.isfile(x) else None for x in state_files]
for fid in un_fids:
date = fid[4:12]
if os.path.isdir(os.path.join(args.output_dir, date)) is False:
subprocess.call(f'mkdir {os.path.join(args.output_dir, date)}',shell=True)
out_files = [os.path.join(args.output_dir, os.path.basename(x).split('_')[0][4:12], os.path.basename(x).split('_')[0]) for x in rdn_files]
n=0
for _r in range(len(rdn_files)):
ch4_mf_kmz_file = f'{out_files[_r]}_ch4_mf_color.kmz'
co2_mf_kmz_file = f'{out_files[_r]}_co2_mf_color.kmz'
launch = os.path.isfile(ch4_mf_kmz_file) is False
if os.path.isfile(ch4_mf_kmz_file) is False or (args.co2 and os.path.isfile(co2_mf_kmz_file) is False):
cmd_str=f'sbatch -N 1 -c 40 -p standard --mem=180G --wrap="python ghg_process.py {rdn_files[_r]} {obs_files[_r]} {loc_files[_r]} {glt_files[_r]} {l1b_bandmask_files[_r]} {l2a_mask_files[_r]} {out_files[_r]}'
if args.co2:
cmd_str += ' --co2'
if state_files[_r] is not None:
cmd_str += f' --state_subs {state_files[_r]}"'
else:
cmd_str += f'"'
print(cmd_str)
env=os.environ.copy()
subprocess.call(cmd_str,shell=True,env=env)
if __name__ == '__main__':
main()