-
Notifications
You must be signed in to change notification settings - Fork 8
/
notes-21_Dirichlet-process-models_bda3-23.Rmd
348 lines (281 loc) · 13.8 KB
/
notes-21_Dirichlet-process-models_bda3-23.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
# Section 21. Notes on 'Ch 23. Dirichlet process models'
2022-01-20
```{r setup, warning=FALSE, message=FALSE}
knitr::opts_chunk$set(echo = TRUE, dpi = 300, comment = "#>")
library(tidyverse)
theme_set(
theme_bw() +
theme(
strip.background = element_blank(),
axis.ticks = element_blank()
)
)
```
> These are just notes on a single chapter of *BDA3* that were not part of the course.
## Chapter 23. Dirichlet process models
- **Dirichlet process**: an infinite-dimensional generalization of the Dirichlet distribution
- used as a prior on unknown distributions
- can extend finite component mixture models to infinite mixture models
### 23.1 Bayesian histograms {-}
- the histogram as a simple form of density estimation
- demonstrate a flexible parametric version that motivates the non-parametric in the following section
- prespecified knots: $\xi = (\xi_0, \dots, \xi_k)$ with $\xi_{n-1} < \xi_n$
- probability model for the density (a histogram):
- where $\pi = (\pi_1, \dots, \pi_k)$ is an unknown probability vector
$$
f(y) = \sum_{h=1}^k 1_{\xi_{h-1} < y \le \xi_h} \frac{\pi_h}{(\xi_h - \xi_{h-1})}
$$
- prior for the probabilities $\pi$ as a Dirichlet distribution:
$$
p(\pi|a) = \frac{\Gamma(\sum_{h=1}^k a_h)}{\prod_{h=1}^k \Gamma(a_h)} \prod_{h=1}^k \pi _h^{a_h - 1}
$$
- replace the hyperparameter vector: $a = \alpha \pi_0$ where $\pi_0$ is:
$$
\text{E}(\pi|a) = \pi_0 = \left( \frac{a_1}{\sum_h a_h}, \dots, \frac{a_k}{\sum_h a_h} \right)
$$
- the posterior for $\pi$ becomes:
- where $n_i$ is the number of observations $y$ in the $i$th bin
$$
p(\pi | y) \propto \prod_{h=1}^k \pi_h^{a_h + n_h - 1} = \text{Dirichlet}(a_1 + n_1, \dots, a_k + n_k)
$$
- this histogram estimator does well but is sensitive to the specification of the knots
### 23.2 Dirichlet process prior distributions {-}
#### Definition and basic properties {-}
- goal is to not need to prespecify the bins of the histogram
- let:
- $\Omega$: sample space
- $B_1, \dots, B_k$: measure subsets of $\Omega$
- if $\Omega = \Re$, then $B_1, \dots, B_k$ are non-overlapping intervals that partition the real line into a finite number of bins
- $P$: unknown probability measure of $(\Omega, \mathcal{B})$
- $\mathcal{B}$: "collection of all possible subsets of the sample space $\Omega$"
- $P$ assigns probabilities to the subsets $\mathcal{B}$
- probability for a set of bins $B_1, \dots, B_k$ partitioning $\Omega$:
$$
P(B_1), \dots, P(B_k) = \left( \int_{B_1} f(y) dy, \dots, \int_{B_k} f(y) dy \right)
$$
- $P$ is a *random probability measure* (RPM), so the bin probabilities are random variables
- a good prior for the bin probabilities is the Dirichlet distribution \@ref(eq:dirichlet-prior
- where $P_0$ is a base probability measure providing the initial guess at $P$
- where $\alpha$ is a prior concentration parameter
- controls shrinkage of $P$ towards $P_0$
$$
P(B_1), \dots, P(B_k) \sim \text{Dirichlet}(\alpha P_0(B_1), \dots, \alpha P_0(B_k))
(\#eq:dirichlet-prior)
$$
- difference with previous Bayesian histogram: only specifies that bin $B_k$ is assigned probability $P(B_k)$ and not how probability mass is distributed across the bin $B_k$
- thus, for a fixed set s of bins, this equation does not full specify the prior for $P$
- need to eliminate the sensitivity to the choice of bins by assuming the prior holds for all possible partitions $B_1, \dots, B_k$ for all $k$
- then it is a fully specified prior for $P$
- "must exist a random probability measure $P$ such that the probabilities assigned to any measurable partition $B_1, \dots, B_k$ by $P$ is $\text{Dirichlet}(\alpha P_0(B_1), \dots, \alpha P_0(B_k))$"
- the resulting $P$ is a Dirichlet process:
- $P \sim \text{DP}(\alpha P_0)$
- $\alpha > 0$: a scalar precision parameter
- $P_0$: baseline probability measure also on $(\Omega, \mathcal{B})$
- implications of DP:
- the marginal random probability assigned to any subset $B$ is a beta distribution
- $P(B) \sim \text{Beta}(\alpha PP_0(B), \alpha (1-P_0(B)))$ for all $B \in \mathcal{B}$
- the prior for $P$ is centered on $P_0$: $E(P(B)) = P_0(B)$
- $\alpha$ controls variance
- $\text{var}(P(B)) = \frac{P_0(B)(1 - P_0(B))}{1 + \alpha}$
- get posterior for $P$:
- let $y_i \stackrel{iid}{\sim} P$ fir $i = 1, \dots, n$
- $P \sim \text{DP}(\alpha P_0)$
- $P$ denotes the probability measure *and* its corresponding distribution
- from \@ref(eq:dirichlet-prior), for any partition $B_1, \dots, B_k$:
$$
p(B_1), \dots, P(B_k) | y_1, \dots, y_k \sim
\text{Dirichlet} \left(
\alpha P_0(B_1) + \sum_{i=1}^n 1_{y_i \in B_1}, \dots, \alpha P_0(B_k) + \sum_{i=1}^n 1_{y_i \in B_k}
\right)
$$
- this can be converted to the following:
$$
P | y_1, \dots, y_n \sim \text{DP} \left( \alpha P_0 \sum_i \delta_{y+i} \right)
$$
- finally, the posterior expectation of $P$:
$$
\text{E}(P(B) | y^n) =
\left(\frac{\alpha}{\alpha + n} \right) P_0(B) +
\left(\frac{n}{\alpha + n} \right) \sum_{i=1}^n \frac{1}{n} \delta_{y_i}
(\#eq:postp)
$$
- DP is a model similar to a random histogram but without dependence on the bins
- cons of a DP prior:
- lack of smoothness
- induces negative correlation between $P(B_1)$ and $P(B_2)$ for any two disjoint bins with no account for the distance between them
- realizations from the DP are discrete distributions
- with $P \sim \text{DP}(\alpha P_0)$, $P$ is atomic and have nonzero weights only on a set of atoms, not a continuous density on the real line
#### Stick-breaking construction {-}
- more intuitive understanding of DP
- induce $P \sim \text{DP}(\alpha P_0)$ by letting:
$$
\begin{aligned}
P(\cdot) &= \sum_{h=1}^{\infty} \pi_h \delta_{\theta_h}(\cdot) \\
\pi_h &= V_h \prod_{l<h} (1 - V_i) \\
V_h &\sim \text{Beta}(1, \alpha) \\
\theta_h &\sim P_0
\end{aligned}
$$
- where:
- $P_0$: base distribution
- $\delta_\theta$: degenerate distribution with all mass at $\theta$
- $(\theta_h)_{h=1}^{\infty}$: the *atoms* generated independently by from $P_0$
- the atoms are generated by the *stick-breaking process*
- this ensures the weights sum to 1
- $\pi_h$: probability mass at atom $\theta_h$
- the *stick-breaking process*:
- start with a stick of length 1
- represents the total probability allocated to all the atoms
- break off a random piece of length $V_1$ determined by a draw from $\text{Beta}(1, \alpha)$
- set $\pi_1 = V_1$ as the probability weight to the randomly generated first atom $\theta_1 \sim P_0$
- break off another piece of the remaining stick (now length $1-V_1$): $V_2 \sim \text{Beta}(1, \alpha)$
- set $\pi_2 = V_2(1-V_1)$ as the probability weight to the next atom $\theta_2 \sim P_0$
- repeat until the stick is fully used
- implications:
- during the process, the stick get shorter, so lengths allocated to later indexed atoms decrease stochastically
- rate of decrease of stick length depends on $\alpha$
- $\alpha$ near 0 lead to high weights early on
- below are realizations of the stick breaking process
- set $P_0$ as a standard normal distribution and vary $\alpha$
```{r}
stick_breaking_process <- function(alpha, n = 1000) {
theta <- rnorm(n, 0, 1) # P0 = standard normal
vs <- rbeta(n, 1, alpha)
pi <- rep(0, n)
pi[1] <- vs[1]
stick <- 1.0 - vs[1]
for (h in 2:n) {
pi[h] <- vs[h] * stick
stick <- stick - pi[h]
}
return(list(theta = theta, pi = pi))
}
dp_realization <- stick_breaking_process(10)
sum(dp_realization$pi)
```
```{r, warning=FALSE}
set.seed(549)
tibble(alpha = c(0.5, 1, 5, 10)) %>%
mutate(
dp = purrr::map(alpha, stick_breaking_process, n = 1000),
theta = purrr::map(dp, ~ .x$theta),
pi = purrr::map(dp, ~ .x$pi)
) %>%
select(-dp) %>%
unnest(c(theta, pi)) %>%
ggplot(aes(x = theta, y = pi)) +
facet_wrap(vars(alpha), nrow = 2, scales = "fixed") +
geom_col(width = 0.05) +
scale_x_continuous(expand = expansion(c(0.02, 0.02))) +
scale_y_continuous(expand = expansion(c(0, 0.02))) +
labs(x = "\u03B8", y = "\u03C0")
```
### 23.3 Dirichlet process mixtures {-}
#### Specification and Polya urns {-}
- **"the DP is more appropriately used as a prior for an unknown mixture of distributions"** (pg 549)
- in the case of density estimation, a general kernel mixture model can be specified as \@ref(eq:kernel-density)
- $\mathcal{K}(\cdot | \theta)$: a kernel
- $\theta$: location and possibly scale parameters
- $P$: "mixing measure"
$$
f(y|P) = \int \mathcal{K}(y|\theta) d P(\theta)
(\#eq:kernel-density)
$$
- treating $P$ as discrete results in a finite mixture model
- setting a prior on $P$ creates an infinite mixture model
- prior: $P \sim \pi_\mathcal{P}$
- $\mathcal{P}$: space of all probability measures on $(\Omega, \mathcal{B})$
- $\pi_\mathcal{P}$: the prior over the space defined by $\mathcal{P}$
- if set $\pi_\mathcal{P}$ as a DP prior, results in a DP mixture model
- from \@ref(eq:postp) and \@ref(eq:kernel-density), a DP prior on $P$ results in \@ref(eq:dp-kernel)
- where:
- $\pi = \sim \text{stick}(\alpha)$ denotes that the probability weights are from the stick-breaking process with parameter $\alpha$
- $\theta_h \sim P_0$ independently for each $h=1, \dots, \infty$
$$
f(y) = \sum_{h=1}^\infty \pi_h \mathcal{K}(y | \theta_h^*)
(\#eq:dp-kernel)
$$
- equation \@ref(eq:dp-kernel) resembles a finite mixture model except the number of mixture components in set to infinity
- does not mean there will be infinite number of components
- instead the model is just flexible to add more mixture components if necessary
- consider the following specification
- issue of how to conduct posterior computation with a DP mixture (DPM) because $P$ has infinitely many parameters
$$
y_i \sim \mathcal{K}(\theta_i) \text{,} \quad
\theta_i \sim P \text{,} \quad
P \sim \text{DP}(\alpha P_0)
$$
- can marginalize out $P$ to get an induced prior on the subject-specific parameters $\theta^n = (\theta_1, \dots, \theta_n)$
- results in the *Polya urn* predictive rule:
$$
p(\theta_i | \theta_1, \dots, \theta_{i-1}) \sim \left( \frac{\alpha}{\alpha + i -1} \right) P_0(\theta_i) +
\sum_{j=1}^{i-1} \left( \frac{1}{\alpha + i - 1} \right) \delta_{\theta_j}
(\#eq:polya-urn)
$$
- *Chinese restaurant process* as a metaphor for the Polya urn predictive rule \@ref(eq:polya-urn):
- consider a restaurant with infinitely many tables
- the first customers sits at a table with dish $\theta_1^*$
- the second customer sits at the first table with probability $\frac{1}{1+\alpha}$ or a new table with probability $\frac{\alpha}{1+\alpha}$
- repeat this process for the $i$th customer:
- sit at an occupied table with probability $\frac{c_j}{1 - i + \alpha}$ where $c_j$ is the number of customers already at the table
-sit at a new table with probability $\frac{\alpha}{n-i+\alpha}$
- interpretation:
- each table represents a cluster of subjects
- the number of clusters depends on the number of subjects
- makes sense to have the possibility of more clusters with more subjects (instead of a fixed number of clusters as in a finite mixture model)
- there is a description of the sampling process for the posterior of $\theta_i | \theta_{-i}$
#### Hyperprior distribution {-}
- $\alpha$: the DP precision parameter
- plays a role in controlling the prior on the number of clusters
- small, fixed $\alpha$ favors allocation to few clusters (relative to sample size)
- if $\alpha=1$, the prior indicates that two randomly selected subjects have a 50/50 chance of belonging to the same cluster
- alternatively can set a hyperprior on $\alpha$ and let the data inform the value
- common to use a Gamma distribution: $\Gamma(a_\alpha, b_\alpha)$
- authors indicate that setting a hyperprior on $\alpha$ tends to work well in practice
- $P_0$: base probability for the DP
- can think of $P_0$ as setting the prior for the cluster locations
- can put hyperpriors on $P_0$ parameters
### 23.4 Beyond density estimation {-}
#### Nonparametric residual distributions {-}
- "The real attraction of Dirichlet process mixture (DPM) models is that they can be used much more broadly for relaxing parametric assumptions in hierarchical models." (pg 557)
- consider the linear regression with a nonparametric error distribution \@ref(eq:linreg-nonparam-error)
- $X_i = (X_{i1}, \dots, X_{ip})$: vector of predictors
- $\epsilon_i$: error term with distribution $f$
$$
y_i = X_i \beta + \epsilon_i \text{,} \quad \epsilon_i \sim f
(\#eq:linreg-nonparam-error)
$$
- can relax the assumption that $f$ has parametric form
$$
\epsilon_i \sim N(0, \phi_i^{-1}) \text{,} \quad \phi \sim P \text{,} \quad P \sim \text{DP}(\alpha P_0)
$$
#### Nonparametric models for parameters that vary by group {-}
- consider hierarchical linear models with varying coefficients
- can account for uncertainty about the distribution of coefficients by placing a DP or DPM priors on them
- where:
- $y_i = (y_{i1}, \dots, y_{in_i})$: repeated measurements for item $i$
- $\mu_i$: subject-specific mean
- $\epsilon_{ij}$: observation specific residual
$$
y_{ij} = \mu_i + \epsilon_{ij} \text{,} \quad \mu_i \sim f \text{,} \quad \epsilon_{ij} \sim g
(\#eq:hier-linreg-dp)
$$
- typically for \@ref(eq:hier-linreg-dp):
- $f \equiv N(\mu, \phi^{-1})$
- $g \equiv N(0, \sigma^2)$
- can let more flexibility in characterizing variability among subjects:
- $\mu_i \sim P \text{,} \quad P \sim \text{DP}(\alpha P_0)$
- the DP prior induces a *latent class* model
- the subjects are grouped into an unknown number of clusters \@ref(eq:latent-class-model)
- $S_i \in \{1, \dots, \infty\}$: latent class index
- $\pi_h$: probability of allocation to latent class $h$
$$
\mu_i = \mu^*_{S_i} \text{,} \quad \Pr(S_i = h) = \pi_h \text{,} \quad h = 1, 2, \dots
(\#eq:latent-class-model)
$$
> There is more to this chapter, but it is currently beyond my understanding.
> I hope to return to this chapter later with a better understanding of Dirichlet processes in the future.
---
```{r}
sessionInfo()
```