-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
196 lines (174 loc) · 6.02 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import theano
from conv import conv
import numpy as np
from convExpend import convExpend
from convRBM import convRBM
from convTheano import convTheano
from sklearn.utils import check_random_state
import amitgroup.io.mnist as mn
import time
import os
def testConvOperation():
a = np.array((1,0,0,1,0,0,1,0,0))
a = np.array((a,a,a))
a = np.array((a,a,a))
a = a.reshape((9,9))
b = np.array((2,2,2))
b = np.array((b,b,b))
b = b.reshape((3,3))
print a
print b
print conv(a.flatten(),b.flatten())
print convExpend(a.flatten(),b.flatten())
def testConvTheano(border = 'valid'):
a = np.array((1,0,1,0,1,0))
b = np.array((0,1,0,1,0,1))
A = np.array((a,b,a,b,a,b))
B = np.array((b,a,b,a,b,a))
c = np.array((1,1,1))
C = np.array((c,c,c))
D = np.zeros((3,3))
D[1,1] = 1
Z = np.array((A,B))
#print Z.shape
Y = np.array((C,D))
#print Y.shape
return convTheano(Z.reshape(2,-1),Y.reshape(2,-1))
def testConvSpeed():
a = np.ones(9)
a = np.array((a, 2*a, 3*a, 4*a, 5*a, 6*a, 7*a, 8*a, 9*a))
b = np.ones(3)
b = np.array((b,b,b))
a = a.reshape(9,9)
b = b.reshape(3,3)
current = time.time()
for i in range(10000):
result = conv(a.flatten(),b.flatten())
print time.time() - current
current = time.time()
testConvTheano()
print time.time()-current
print result
def testTotal():
r = testInit()
visibleNodes = np.ones((50,28,28))
for i in xrange(50):
visibleNodes[i,14,:] = 1
visibleNodes = visibleNodes.reshape(50,-1)
r.fit(visibleNodes)
return r
def testInit(useTheano = False):
n_groups = 16
n_components = 24 * 24
window_size = 5
learning_rate = 0.1
batch_size = 10
n_iter = 1000
verbose = False
r = convRBM(n_groups = n_groups, n_components = n_components, window_size = window_size, learning_rate = learning_rate, batch_size = batch_size, n_iter = n_iter, verbose = verbose, use_theano = useTheano)
return r
def testMeanHidden():
r = testInit()
rng = check_random_state(r.random_state)
visibleSamples = 20
r.components_ = np.asarray(rng.normal(0,0.01,(r.n_groups,r.window_size * r.window_size)),order = 'fortran')
r.intercept_hidden_=np.zeros((r.n_groups,r.n_components))
r.intercept_visible_=np.zeros(28 * 28)
visibleNodes = np.ones((20,28*28))
hiddenMean = r._mean_hiddens(visibleNodes,1)
return r, hiddenMean
def testMeanHiddenTheano():
r = testInit(useTheano = True)
rng = check_random_state(r.random_state)
visibleSamples = 20
r.components_ = np.asarray(rng.normal(0,0.01,(r.n_groups,r.window_size * r.window_size)),order = 'fortran')
r.intercept_hidden_=np.zeros((r.n_groups))
r.intercept_visible_=0
visibleNodes = np.ones((20,28*28))
hiddenMean = r._mean_hiddens_theano(visibleNodes)
return r,hiddenMean
def testMeanVisible():
r,hiddenMean = testMeanHidden()
rng = check_random_state(r.random_state)
sample_H = []
for i in range(r.n_groups):
sample_H_k = r._bernoulliSample(hiddenMean,rng)
sample_H.append(sample_H_k)
sample_H = np.array(sample_H)
sample_H = np.swapaxes(sample_H, 0, 1)
return r._mean_visibles(sample_H)
def testMeanVisibleTheano():
r,hiddenMean = testMeanHiddenTheano()
visibleNodes = np.ones((20,28*28))
rng = check_random_state(r.random_state)
sample_H = r._bernoulliSample(hiddenMean,rng)
result = r._mean_visibles_theano(sample_H,visibleNodes)
return result
def testGradience():
r,hiddenMean = testMeanHidden()
visibleSamples = 20
visibleNodes = np.ones((20,28*28))
probability_H = r._mean_hiddens(visibleNodes,1)
gradience_Positive = r._gradience(visibleNodes, probability_H)
return r,visibleNodes, probability_H,gradience_Positive
def testGradienceTheano():
r,hiddenMean = testMeanHiddenTheano()
visibleSamples = 20
visibleNodes = np.ones((20,28*28))
probability_H = hiddenMean
gradience_Positive = r._gradience_theano(visibleNodes, probability_H)
return gradience_Positive
def testConvTheanoMulti():
visibleSample = 3
visibleNodes = np.ones((3,28*28))
h = np.arange(5 * 24 * 24)
h = h.reshape(5,24 * 24)
h = np.array((h,2 * h, 3* h))
current = time.time()
for i in range(1000):
a = np.array([convTheano(visibleNodes[i,:],h[i,:,:]) for i in range(3)])
print time.time()-current
current = time.time()
for i in range(1000):
b = convTheano(visibleNodes,h.reshape(3*5,24*24))
print time.time()-current
return a,b
def testRun():
r = testInit()
visibleSamples = 20
visibleNodes = np.zeros((20,28,28))
visibleNodes[:,14:16,:] = 1
visibleNodes = visibleNodes.reshape(20,28*28)
r.fit(visibleNodes)
return r
def testRunTheano():
r = testInit(useTheano = True)
visibleSamples = 20
visibleNodes = np.zeros((20,28,28))
visibleNodes[:,14:16,:] = 1
visibleNodes = visibleNodes.reshape(20,28*28)
r.fit(visibleNodes)
return r
def testRunMnist():
n_groups = 16
n_components = 24*24
window_size = 5
learning_rate = 0.1
batch_size = 50
n_iter = 20
r = convRBM(n_groups = n_groups, n_components = n_components, window_size = window_size, learning_rate = learning_rate, batch_size = batch_size, n_iter = n_iter, verbose = False)
digits = [0,1,2,3,4,5,6,7,8,9]
images,labels = mn.load_mnist('training',digits,'/Users/jiajunshen/Dropbox/Research/data/',False,slice(0,6000,5),True,False)
return r
def testRunMnistTheano():
n_groups = 16
n_components = 24 * 24
window_size = 5
learning_rate = 0.1
batch_size = 20
n_iter = 200
r = convRBM(n_groups = n_groups, n_components = n_components, window_size = window_size, learning_rate = learning_rate, batch_size = batch_size, n_iter = n_iter, verbose = False,use_theano = True)
digits = [0,1,2,3,4,5,6,7,8,9]
images,labels = mn.load_mnist('training',digits,'/Users/jiajunshen/Dropbox/Research/data/',False,slice(0,6000,5),True,False)
r.fit(images.reshape(1200,28*28))
return r