-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathdemo.py
368 lines (337 loc) · 14.3 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import os
import glob
import torch
import cv2
import numpy as np
import random
import sys
import torch.nn.functional as F
from PIL import Image
import importlib
from torchvision import transforms
from os.path import join
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry, SamPredictor
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
from utils.image import flip_tensor
AOT_PATH = os.path.join(os.path.dirname(__file__), '..')
import dataloaders.video_transforms as tr
from networks.engines import build_engine
from utils.checkpoint import load_network
from networks.models import build_vos_model
from utils.metric import pytorch_iou
base_path = os.path.dirname(os.path.abspath(__file__))
# video for test
demo_video = 'bolt'
img_files = sorted(glob.glob(join(base_path, demo_video, '*.jp*')))
point_box_prompts=[]
def seed_torch(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
seed_torch(1000000007)
torch.set_num_threads(4)
torch.autograd.set_grad_enabled(False)
cur_colors = [(0, 255, 255), # yellow b g r
(255, 0, 0), # blue
(0, 255, 0), # green
(0, 0, 255), # red
(255, 255, 255), # white
(0, 0, 0), # black
(255, 255, 0), # Cyan
(225, 228, 255), # MistyRose
(180, 105, 255), # HotPink
(255, 0, 255), # Magenta
]*100
class AOTTracker(object):
def __init__(self, cfg, gpu_id):
self.with_crop = False
self.EXPAND_SCALE = None
self.small_ratio = 12
self.mid_ratio = 100
self.large_ratio = 0.5
self.AOT_INPUT_SIZE = (465, 465)
self.cnt = 2
self.gpu_id = gpu_id
self.model = build_vos_model(cfg.MODEL_VOS, cfg).cuda(gpu_id)
self.model.cuda(gpu_id)
self.model.eval()
print('cfg.TEST_CKPT_PATH = ', cfg.TEST_CKPT_PATH)
self.model, _ = load_network(self.model, cfg.TEST_CKPT_PATH, gpu_id)
self.aug_nums = len(cfg.TEST_MULTISCALE)
if cfg.TEST_FLIP:
self.aug_nums *= 2
self.engine = []
for aug_idx in range(self.aug_nums):
self.engine.append(build_engine(cfg.MODEL_ENGINE,
phase='eval',
aot_model=self.model,
gpu_id=gpu_id,
short_term_mem_skip=cfg.TEST_SHORT_TERM_MEM_SKIP,
long_term_mem_gap=cfg.TEST_LONG_TERM_MEM_GAP,
))
self.engine[-1].eval()
self.transform = transforms.Compose([
tr.MultiRestrictSize_(cfg.TEST_MAX_SHORT_EDGE,
cfg.TEST_MAX_LONG_EDGE, cfg.TEST_FLIP, cfg.TEST_INPLACE_FLIP,
cfg.TEST_MULTISCALE, cfg.MODEL_ALIGN_CORNERS),
tr.MultiToTensor()
])
def add_first_frame(self, frame, mask):
sample = {
'current_img': frame,
'current_label': mask,
'height': frame.shape[0],
'weight': frame.shape[1]
}
sample = self.transform(sample)
if self.aug_nums > 1:
torch.cuda.empty_cache()
for aug_idx in range(self.aug_nums):
frame = sample[aug_idx]['current_img'].unsqueeze(0).float().cuda(self.gpu_id, non_blocking=True)
mask = sample[aug_idx]['current_label'].unsqueeze(0).float().cuda(self.gpu_id, non_blocking=True)
mask = F.interpolate(mask, size=frame.size()[2:], mode="nearest")
self.engine[aug_idx].add_reference_frame(frame, mask, frame_step=0, obj_nums=int(mask.max()))
def track(self, image):
height = image.shape[0]
width = image.shape[1]
sample = {'current_img': image}
sample['meta'] = {
'height': height,
'width': width,
'flip': False
}
sample = self.transform(sample)
if self.aug_nums > 1:
torch.cuda.empty_cache()
all_preds = []
for aug_idx in range(self.aug_nums):
output_height = sample[aug_idx]['meta']['height']
output_width = sample[aug_idx]['meta']['width']
image = sample[aug_idx]['current_img'].unsqueeze(0).float().cuda(self.gpu_id, non_blocking=True)
image = image.cuda(self.gpu_id, non_blocking=True)
self.engine[aug_idx].match_propogate_one_frame(image)
is_flipped = sample[aug_idx]['meta']['flip']
pred_logit = self.engine[aug_idx].decode_current_logits((output_height, output_width))
if is_flipped:
pred_logit = flip_tensor(pred_logit, 3)
pred_prob = torch.softmax(pred_logit, dim=1)
all_preds.append(pred_prob)
cat_all_preds = torch.cat(all_preds, dim=0)
pred_prob = torch.mean(cat_all_preds, dim=0, keepdim=True)
pred_label = torch.argmax(pred_prob, dim=1, keepdim=True).float()
_pred_label = F.interpolate(pred_label,
size=self.engine[aug_idx].input_size_2d,
mode="nearest")
self.engine[aug_idx].update_memory(_pred_label)
mask = pred_label.detach().cpu().numpy()[0][0].astype(np.uint8)
conf = 0
return mask, conf
def read_img(img_path):
image = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
return image
class HQTrack(object):
def __init__(self, cfg, config, local_track=False,sam_refine=False,sam_refine_iou=0):
self.mask_size = None
self.local_track = local_track
self.aot_tracker = AOTTracker(cfg, config['gpu_id'])
# SAM
self.sam_refine=sam_refine
if self.sam_refine:
model_type = 'vit_h' #'vit_h'
sam_checkpoint = os.path.join(os.path.dirname(__file__), '..', 'segment_anything_hq/pretrained_model/sam_hq_vit_h.pth')
output_mode = "binary_mask"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=torch.device('cuda'))
self.mask_generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode)
self.mask_prompt = SamPredictor(sam)
self.sam_refine_iou=sam_refine_iou
def get_box(self, label):
thre = np.max(label) * 0.5
label[label > thre] = 1
label[label <= thre] = 0
a = np.where(label != 0)
height, width = label.shape
ratio = 0.0
if len(a[0]) != 0:
bbox1 = np.stack([np.min(a[1]), np.min(a[0]), np.max(a[1]), np.max(a[0])])
w, h = np.max(a[1]) - np.min(a[1]), np.max(a[0]) - np.min(a[0])
x1 = max(bbox1[0] - w * ratio, 0)
y1 = max(bbox1[1] - h * ratio, 0)
x2 = min(bbox1[2] + w * ratio, width)
y2 = min(bbox1[3] + h * ratio, height)
bbox = np.array([x1, y1, x2, y2])
else:
bbox = np.array([0, 0, 0, 0])
return bbox
def initialize(self, image, mask):
self.tracker = self.aot_tracker
self.tracker.add_first_frame(image, mask)
self.aot_mix_tracker = None
self.mask_size = mask.shape
def track(self, image):
m, confidence = self.tracker.track(image)
m = F.interpolate(torch.tensor(m)[None, None, :, :],
size=self.mask_size, mode="nearest").numpy().astype(np.uint8)[0][0]
if self.sam_refine:
obj_list = np.unique(m)
mask_ = np.zeros_like(m)
mask_2 = np.zeros_like(m)
masks_ls = []
for i in obj_list:
mask = (m == i).astype(np.uint8)
if i == 0 or mask.sum() == 0:
masks_ls.append(mask_)
continue
bbox = self.get_box(mask)
# box prompt
self.mask_prompt.set_image(image)
masks_, iou_predictions, _ = self.mask_prompt.predict(box=bbox)
select_index = list(iou_predictions).index(max(iou_predictions))
output = masks_[select_index].astype(np.uint8)
iou = pytorch_iou(torch.from_numpy(output).cuda().unsqueeze(0),
torch.from_numpy(mask).cuda().unsqueeze(0), [1])
iou = iou.cpu().numpy()
if iou < self.sam_refine_iou:
output = mask
masks_ls.append(output)
mask_2 = mask_2 + output * i
masks_ls = np.stack(masks_ls)
masks_ls_ = masks_ls.sum(0)
masks_ls_argmax = np.argmax(masks_ls, axis=0)
rs = np.where(masks_ls_ > 1, masks_ls_argmax, mask_2)
rs = np.array(rs).astype(np.uint8)
return rs, confidence
return m, confidence
def OnMouse_box(event,x,y,flags,param):
global x0, y0, img4show, img
if event == cv2.EVENT_LBUTTONDOWN:
x0,y0 =x,y
elif event == cv2.EVENT_MOUSEMOVE and flags == cv2.EVENT_FLAG_LBUTTON:
x_temp, y_temp = x, y
img4show=img.copy()
cv2.rectangle(img4show, (x0, y0), (x_temp, y_temp), (255, 255, 0), 2)
elif event == cv2.EVENT_LBUTTONUP:
x1, y1 = x, y
cv2.rectangle(img4show, (x0, y0), (x, y), (255, 255, 0), 2)
img=img4show
point_box_prompts.append([x0, y0, x1, y1])
def OnMouse_point(event,x,y,flags,param):
global x0, y0, img4show, img
if event == cv2.EVENT_LBUTTONDOWN:
x0,y0 =x,y
# print(x0,y0)
point_box_prompts.append([x0,y0])
elif event == cv2.EVENT_LBUTTONUP:
cv2.circle(img4show, (x0, y0), 4, (0, 255, 0), 6)
img=img4show
# SAM
print("SAM init ...")
model_type = 'vit_l'
sam_checkpoint = os.path.join(base_path, '..', 'segment_anything_hq/pretrained_model/sam_hq_vit_l.pth')
output_mode = "binary_mask"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=torch.device('cuda'))
mask_generator = SamAutomaticMaskGenerator(sam, output_mode=output_mode)
mask_prompt = SamPredictor(sam)
# HQTrack config
# choose point or box prompt for SAM
SAM_prompt = 'Point' #'Box
set_Tracker = 'HQTrack'
sam_refine = True
sam_refine_iou = 0.1
muti_object = True
epoch_num=42000
config = {
'exp_name': 'default',
'model': 'internT_msdeaotl_v2',
'pretrain_model_path': 'result/default_InternT_MSDeAOTL_V2/YTB_DAV_VIP/ckpt/save_step_{}.pth'.format(epoch_num),
'gpu_id': 0,}
# set cfg
print('VMOS init ...')
if set_Tracker in ['HQTrack']:
engine_config = importlib.import_module('configs.' + 'ytb_vip_dav_deaot_internT')
cfg = engine_config.EngineConfig(config['exp_name'], config['model'])
cfg.TEST_CKPT_PATH = os.path.join(AOT_PATH, config['pretrain_model_path'])
palette_template = Image.open(os.path.join(os.path.dirname(__file__), '..', 'my_tools/mask_palette.png')).getpalette()
tracker = HQTrack(cfg, config, True, sam_refine,sam_refine_iou)
save_dir = './output'
for idx,img_file in enumerate(img_files):
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_ori=img.copy()
# Select ROI
if idx == 0:
img4show = img.copy()
while (1):
cv2.namedWindow("demo")
cv2.imshow('demo', cv2.cvtColor(img4show, cv2.COLOR_RGB2BGR))
if SAM_prompt == 'Box':
OnMouse = OnMouse_box
elif SAM_prompt == 'Point':
OnMouse = OnMouse_point
cv2.setMouseCallback('demo', OnMouse)
k = cv2.waitKey(1)
if k == ord('r'):
break
# point prompt
masks_ls = []
mask_2 = np.zeros_like(img[:,:,0])
masks_ls.append(mask_2)
for obj_idx, prompt in enumerate(point_box_prompts):
mask_prompt.set_image(img_ori)
if SAM_prompt == 'Box':
masks_, iou_predictions, _ = mask_prompt.predict(box=np.array(prompt).astype(float))
elif SAM_prompt == 'Point':
masks_, iou_predictions, _ = mask_prompt.predict(point_labels=np.asarray([1]), point_coords=np.asarray([prompt]))
select_index = list(iou_predictions).index(max(iou_predictions))
init_mask = masks_[select_index].astype(np.uint8)
masks_ls.append(init_mask)
mask_2 = mask_2 + init_mask * (obj_idx+1)
masks_ls = np.stack(masks_ls)
masks_ls_ = masks_ls.sum(0)
masks_ls_argmax = np.argmax(masks_ls, axis=0)
rs = np.where(masks_ls_ > 1, masks_ls_argmax, mask_2)
rs = np.array(rs).astype(np.uint8)
init_masks = []
for i in range(len(masks_ls)):
m_temp = rs.copy()
m_temp[m_temp!=i+1]=0
m_temp[m_temp!=0]=1
init_masks.append(m_temp)
# img+mask for vis
img = cv2.cvtColor(img_ori.astype(np.float32), cv2.COLOR_RGB2BGR)
for idx, m in enumerate(init_masks):
img[:, :, 1] += 127.0 * m
img[:, :, 2] += 127.0 * m
contours, _ = cv2.findContours(m, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
im_m = cv2.drawContours(img, contours, -1, cur_colors[idx], 2)
im_m = im_m.clip(0, 255).astype(np.uint8)
cv2.putText(im_m, 'Init', (35, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (0, 255, 0), 5)
cv2.imshow('demo', im_m)
k = cv2.waitKey(1)
# HQtrack init
print('init target objects ...')
tracker.initialize(img_ori, rs)
obj_num = len(init_masks)
print('HQTrack running ...')
else:
m, confidence = tracker.track(img_ori)
print('Running frame ', idx)
pred_masks = []
for i in range(obj_num):
m_temp = m.copy()
m_temp[m_temp != i + 1] = 0
m_temp[m_temp != 0] = 1
pred_masks.append(m_temp)
img = cv2.cvtColor(img_ori.astype(np.float32), cv2.COLOR_RGB2BGR)
for idx, m in enumerate(pred_masks):
img[:, :, 1] += 127.0 * m
img[:, :, 2] += 127.0 * m
contours, _ = cv2.findContours(m, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
im_m = cv2.drawContours(img, contours, -1, cur_colors[idx], 2)
im_m = im_m.clip(0, 255).astype(np.uint8)
save_path = os.path.join(save_dir, img_file.split('/')[-1])
cv2.imwrite(save_path, im_m)