-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathextract_pauses_2.py
269 lines (214 loc) · 7.89 KB
/
extract_pauses_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
'''
================================================
PAUSES REPOSITORY
================================================
repository name: pauses
repository version: 1.0
repository link: https://github.com/jim-schwoebel/pauses
author: Jim Schwoebel
author contact: [email protected]
description: 🎤 quick library to extract pause lengths from audio files.
license category: opensource
license: Apache 2.0 license
organization name: NeuroLex Laboratories, Inc.
location: Seattle, WA
website: https://neurolex.ai
release date: 2019-04-01
This code (pauses) is hereby released under a Apache 2.0 license license.
For more information, check out the license terms below.
================================================
LICENSE TERMS
================================================
Copyright 2019 NeuroLex Laboratories, Inc.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
================================================
SERVICE STATEMENT
================================================
If you are using the code written for a larger project, we are
happy to consult with you and help you with deployment. Our team
has >10 world experts in Kafka distributed architectures, microservices
built on top of Node.js / Python / Docker, and applying machine learning to
model speech and text data.
We have helped a wide variety of enterprises - small businesses,
researchers, enterprises, and/or independent developers.
If you would like to work with us let us know @ [email protected].
'''
import librosa, pickle, getpass, time, shutil
from pydub import AudioSegment
import speech_recognition as sr
import os, nltk, random, json
import numpy as np
import librosa_features as lf
cur_dir=os.getcwd()+'/load_dir'
model_dir=os.getcwd()+'/models'
load_dir=os.getcwd()+'/load_dir'
modelname='speech_silence_tpotclassifier.pickle'
## helper function
def find_wav(listdir):
wavfiles=list()
for j in range(len(listdir)):
if listdir[j][-4:]=='.wav':
wavfiles.append(listdir[j])
return wavfiles
# get statistical features in numpy
def stats(matrix):
mean=np.mean(matrix)
std=np.std(matrix)
maxv=np.amax(matrix)
minv=np.amin(matrix)
median=np.median(matrix)
output=np.array([mean,std,maxv,minv,median])
return output
def exportfile(newAudio,time1,time2,filename,i):
#Exports to a wav file in the current path.
newAudio2 = newAudio[time1:time2]
g=os.listdir()
if filename[0:-4]+'_'+str(i)+'.wav' in g:
filename2=str(i)+'_segment'+'.wav'
print('making %s'%(filename2))
newAudio2.export(filename2,format="wav")
else:
filename2=filename[0:-4]+'_'+str(i)+'.wav'
print('making %s'%(filename2))
newAudio2.export(filename2, format="wav")
return filename2
def split_segments(filename):
#recommend >0.20 seconds for timesplit
timesplit=0.20
hop_length = 512
n_fft=2048
y, sr = librosa.load(filename)
duration=float(librosa.core.get_duration(y))
#Now splice an audio signal into individual elements of 20 ms and extract
segnum=round(duration/timesplit)
deltat=duration/segnum
timesegment=list()
time=0
for i in range(segnum):
#milliseconds
timesegment.append(time)
time=time+deltat*1000
newAudio = AudioSegment.from_wav(filename)
filelist=list()
file=filename
for i in range(len(timesegment)-1):
filename=exportfile(newAudio,timesegment[i],timesegment[i+1],file,i)
filelist.append(filename)
return filelist
def featurize(wavfile):
features, labels = lf.librosa_featurize(wavfile, False)
return features.tolist()
model_list=list()
os.chdir(model_dir)
listdir=os.listdir()
for i in range(len(listdir)):
if listdir[i][-7:]=='.pickle' and listdir[i].find('tpot')>0:
model_list.append(listdir[i])
count=0
errorcount=0
try:
os.chdir(load_dir)
except:
os.mkdir(load_dir)
os.chdir(load_dir)
listdir=os.listdir()
print(os.getcwd())
# get all .WAV files
wavfiles=find_wav(listdir)
# load the machine learniing model
os.chdir(model_dir)
loadmodel=open(modelname, 'rb')
model = pickle.load(loadmodel)
i1=modelname.find('_')
name1=modelname[0:i1]
i2=modelname[i1+1:]
i3=i2.find('_')
name2=i2[0:i3]
os.chdir(load_dir)
# loop through all the .WAV files and count number of pauses per file (20 MS window)
for i in range(len(wavfiles)):
os.chdir(load_dir)
filename=wavfiles[i]
if filename[0:-4]+'.json' not in listdir:
foldername=filename[0:-4]
os.mkdir(foldername)
os.chdir(foldername)
# move file to the proper directory
shutil.copy(load_dir+'/'+filename, load_dir+'/'+foldername+'/'+filename)
filelist=split_segments(filename)
# remove the filename from current directory
os.remove(filename)
# initialize list to count silence events
class_list=list()
for j in range(len(filelist)):
try:
features=np.array(featurize(filelist[j]))
print(features)
features=features.reshape(1,-1)
output=str(model.predict(features)[0])
if float(output)==0:
classname=name1
else:
classname=name2
class_list.append(classname)
except:
pass
os.chdir(load_dir)
# now count counsecutive pauses compressed into 20 millsecond windows
class_list2=list()
temp_time=0
for j in range(len(class_list)):
if j != 0:
if class_list[j] == class_list[j-1]:
# merge pause lengths and speech segments
temp_time=temp_time+0.20
else:
# don't merge them, indicates a shift
class_list2.append({class_list[j-1]:temp_time})
temp_time=0.20
else:
pass
pause_lengths=list()
pause_lengths_array=list()
for j in range(len(class_list2)):
try:
pause_length=class_list2[j]['silence']
pause_lengths.append(pause_length)
pause_lengths_array.append(np.array(pause_length))
except:
pass
try:
pause_stats=stats(pause_lengths_array)
# calculate statistical features of pause lengths
total_pause_lengths=class_list.count('silence')*0.20
data= {'filename': filename,
'total_length': total_pause_lengths,
'mean':float(pause_stats[0]),
'std':float(pause_stats[1]),
'max_value':float(pause_stats[2]),
'min_pause':float(pause_stats[3]),
'median':float(pause_stats[4]),
}
except:
# calculate statistical features of pause lengths
total_pause_lengths=0
data= {'filename': filename,
'total_length': total_pause_lengths,
'mean':0,
'std':0,
'max_value':0,
'min_pause':0,
'median':0,
}
jsonfilename=filename[0:-4]+'.json'
jsonfile=open(jsonfilename,'w')
json.dump(data,jsonfile)
jsonfile.close()