-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuser_proj_example.gcd.v
203 lines (186 loc) · 5.73 KB
/
user_proj_example.gcd.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
// SPDX-FileCopyrightText: 2020 Efabless Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// SPDX-License-Identifier: Apache-2.0
`default_nettype none
/*
*-------------------------------------------------------------
*
* user_proj_example
*
* This is an example of a (trivially simple) user project,
* showing how the user project can connect to the logic
* analyzer, the wishbone bus, and the I/O pads.
*
* This project generates an integer count, which is output
* on the user area GPIO pads (digital output only). The
* wishbone connection allows the project to be controlled
* (start and stop) from the management SoC program.
*
* See the testbenches in directory "mprj_counter" for the
* example programs that drive this user project. The three
* testbenches are "io_ports", "la_test1", and "la_test2".
*
*-------------------------------------------------------------
*/
module user_proj_example #(
parameter BITS = 32
)(
`ifdef USE_POWER_PINS
inout vccd1, // User area 1 1.8V supply
inout vssd1, // User area 1 digital ground
`endif
// Wishbone Slave ports (WB MI A)
input wb_clk_i,
input wb_rst_i,
input wbs_stb_i,
input wbs_cyc_i,
input wbs_we_i,
input [3:0] wbs_sel_i,
input [31:0] wbs_dat_i,
input [31:0] wbs_adr_i,
output wbs_ack_o,
output [31:0] wbs_dat_o,
// Logic Analyzer Signals
input [127:0] la_data_in,
output [127:0] la_data_out,
input [127:0] la_oenb,
// IOs
input [`MPRJ_IO_PADS-1:0] io_in,
output [`MPRJ_IO_PADS-1:0] io_out,
output [`MPRJ_IO_PADS-1:0] io_oeb,
// IRQ
output [2:0] irq
);
wire clk;
wire rst;
wire [`MPRJ_IO_PADS-1:0] io_in;
wire [`MPRJ_IO_PADS-1:0] io_out;
wire [`MPRJ_IO_PADS-1:0] io_oeb;
wire [31:0] rdata;
wire [31:0] wdata;
wire [BITS-1:0] gcd_o;
wire valid;
wire [3:0] wstrb;
wire [31:0] la_write_a;
wire [31:0] la_write_b;
// WB MI A
assign valid = wbs_cyc_i && wbs_stb_i;
assign wstrb = wbs_sel_i & {4{wbs_we_i}};
assign wbs_dat_o = rdata;
assign wdata = wbs_dat_i;
// IO
assign io_out = gcd_o;
assign io_oeb = {(`MPRJ_IO_PADS-1){rst}};
// IRQ
assign irq = 3'b000; // Unused
// LA
assign la_data_out = {{(127-BITS){1'b0}}, gcd_o};
// Assuming LA probes [63:32] and [31:0] are for controlling the seq_gcd register
assign la_write_a = ~la_oenb[31:0] & ~{BITS{valid}};
assign la_write_b = ~la_oenb[63:32] & ~{BITS{valid}};
// Assuming LA probes [65:64] are for controlling the seq_gcd clk & reset
assign clk = (~la_oenb[64]) ? la_data_in[64]: wb_clk_i;
assign rst = (~la_oenb[65]) ? la_data_in[65]: wb_rst_i;
seq_gcd seq_gcd(
.clk(clk),
.rst_n(~rst),
//.load_i(valid),
//.wdata(wbs_dat_i),
//.wstrb(wstrb),
.la_write_a(la_write_a),
.la_write_b(la_write_b),
.a_i(la_data_in[31:0]),
.b_i(la_data_in[63:32]),
.gcd_o(gcd_o),
.rdata(rdata),
.ready(wbs_ack_o)
);
endmodule
module seq_gcd (
clk,
rst_n,
la_write_a,
la_write_b,
a_i,
b_i,
gcd_o,
rdata,
ready
);
input wire clk;
input wire rst_n;
input wire [31:0] la_write_a;
input wire [31:0] la_write_b;
input wire [31:0] a_i;
input wire [31:0] b_i;
output reg [31:0] gcd_o;
output reg [31:0] rdata;
output reg ready;
reg [31:0] a_q;
reg [31:0] b_q;
wire [31:0] a_muxed;
wire [31:0] b_muxed;
wire la_load;
reg done_o;
reg CS;
reg NS;
reg load_int;
always @(posedge clk or negedge rst_n) begin : proc_seq
if (~rst_n) begin
a_q <= 0;
b_q <= 0;
gcd_o <= 0;
rdata <= 0;
ready <= 0;
end
else begin
a_q <= a_muxed;
b_q <= b_muxed;
if (done_o) gcd_o <= a_q;
end
end
//assign gcd_o = a_q;
assign la_load = (&la_write_a)&(&la_write_b);
assign a_muxed = (load_int ? a_i : b_q);
assign b_muxed = (load_int ? b_i : a_q % b_q);
always @(posedge clk or negedge rst_n) begin : proc_update_state
if (~rst_n)
CS <= 1'd0;
else
CS <= NS;
end
always @(*) begin : proc_compute_NS
load_int = 1'b0;
done_o = 1'b0;
case (CS)
1'd0: begin
done_o = 1'b0;
load_int = la_load;
if (la_load)
NS = 1'd1;
else
NS = 1'd0;
end
1'd1: begin
load_int = 1'b0;
done_o = b_q == 0;
if (b_q == 0)
NS = 1'd0;
else
NS = 1'd1;
end
endcase
end
endmodule
`default_nettype wire