-
Notifications
You must be signed in to change notification settings - Fork 101
/
Copy pathmodel.py
316 lines (276 loc) · 13.2 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Date : 2017-12-04 11:37:04
# @Author : jimmy ([email protected])
# @Link : http://sdcs.sysu.edu.cn
# @Version : $Id$
import os
import math
import pickle
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from projection import *
USE_CUDA = torch.cuda.is_available()
if USE_CUDA:
longTensor = torch.cuda.LongTensor
floatTensor = torch.cuda.FloatTensor
else:
longTensor = torch.LongTensor
floatTensor = torch.FloatTensor
class TransEModel(nn.Module):
def __init__(self, config):
super(TransEModel, self).__init__()
self.learning_rate = config.learning_rate
self.early_stopping_round = config.early_stopping_round
self.L1_flag = config.L1_flag
self.filter = config.filter
self.embedding_size = config.embedding_size
self.entity_total = config.entity_total
self.relation_total = config.relation_total
self.batch_size = config.batch_size
ent_weight = floatTensor(self.entity_total, self.embedding_size)
rel_weight = floatTensor(self.relation_total, self.embedding_size)
# Use xavier initialization method to initialize embeddings of entities and relations
nn.init.xavier_uniform(ent_weight)
nn.init.xavier_uniform(rel_weight)
self.ent_embeddings = nn.Embedding(self.entity_total, self.embedding_size)
self.rel_embeddings = nn.Embedding(self.relation_total, self.embedding_size)
self.ent_embeddings.weight = nn.Parameter(ent_weight)
self.rel_embeddings.weight = nn.Parameter(rel_weight)
normalize_entity_emb = F.normalize(self.ent_embeddings.weight.data, p=2, dim=1)
normalize_relation_emb = F.normalize(self.rel_embeddings.weight.data, p=2, dim=1)
self.ent_embeddings.weight.data = normalize_entity_emb
self.rel_embeddings.weight.data = normalize_relation_emb
def forward(self, pos_h, pos_t, pos_r, neg_h, neg_t, neg_r):
pos_h_e = self.ent_embeddings(pos_h)
pos_t_e = self.ent_embeddings(pos_t)
pos_r_e = self.rel_embeddings(pos_r)
neg_h_e = self.ent_embeddings(neg_h)
neg_t_e = self.ent_embeddings(neg_t)
neg_r_e = self.rel_embeddings(neg_r)
# L1 distance
if self.L1_flag:
pos = torch.sum(torch.abs(pos_h_e + pos_r_e - pos_t_e), 1)
neg = torch.sum(torch.abs(neg_h_e + neg_r_e - neg_t_e), 1)
# L2 distance
else:
pos = torch.sum((pos_h_e + pos_r_e - pos_t_e) ** 2, 1)
neg = torch.sum((neg_h_e + neg_r_e - neg_t_e) ** 2, 1)
return pos, neg
class TransHModel(nn.Module):
def __init__(self, config):
super(TransHModel, self).__init__()
self.learning_rate = config.learning_rate
self.early_stopping_round = config.early_stopping_round
self.L1_flag = config.L1_flag
self.filter = config.filter
self.embedding_size = config.embedding_size
self.entity_total = config.entity_total
self.relation_total = config.relation_total
self.batch_size = config.batch_size
ent_weight = floatTensor(self.entity_total, self.embedding_size)
rel_weight = floatTensor(self.relation_total, self.embedding_size)
norm_weight = floatTensor(self.relation_total, self.embedding_size)
nn.init.xavier_uniform(ent_weight)
nn.init.xavier_uniform(rel_weight)
nn.init.xavier_uniform(norm_weight)
self.ent_embeddings = nn.Embedding(self.entity_total, self.embedding_size)
self.rel_embeddings = nn.Embedding(self.relation_total, self.embedding_size)
self.norm_embeddings = nn.Embedding(self.relation_total, self.embedding_size)
self.ent_embeddings.weight = nn.Parameter(ent_weight)
self.rel_embeddings.weight = nn.Parameter(rel_weight)
self.norm_embeddings.weight = nn.Parameter(norm_weight)
normalize_entity_emb = F.normalize(self.ent_embeddings.weight.data, p=2, dim=1)
normalize_relation_emb = F.normalize(self.rel_embeddings.weight.data, p=2, dim=1)
normalize_norm_emb = F.normalize(self.norm_embeddings.weight.data, p=2, dim=1)
self.ent_embeddings.weight.data = normalize_entity_emb
self.rel_embeddings.weight.data = normalize_relation_emb
self.norm_embeddings.weight.data = normalize_norm_emb
def forward(self, pos_h, pos_t, pos_r, neg_h, neg_t, neg_r):
pos_h_e = self.ent_embeddings(pos_h)
pos_t_e = self.ent_embeddings(pos_t)
pos_r_e = self.rel_embeddings(pos_r)
pos_norm = self.norm_embeddings(pos_r)
neg_h_e = self.ent_embeddings(neg_h)
neg_t_e = self.ent_embeddings(neg_t)
neg_r_e = self.rel_embeddings(neg_r)
neg_norm = self.norm_embeddings(neg_r)
pos_h_e = projection_transH_pytorch(pos_h_e, pos_norm)
pos_t_e = projection_transH_pytorch(pos_t_e, pos_norm)
neg_h_e = projection_transH_pytorch(neg_h_e, neg_norm)
neg_t_e = projection_transH_pytorch(neg_t_e, neg_norm)
if self.L1_flag:
pos = torch.sum(torch.abs(pos_h_e + pos_r_e - pos_t_e), 1)
neg = torch.sum(torch.abs(neg_h_e + neg_r_e - neg_t_e), 1)
else:
pos = torch.sum((pos_h_e + pos_r_e - pos_t_e) ** 2, 1)
neg = torch.sum((neg_h_e + neg_r_e - neg_t_e) ** 2, 1)
return pos, neg
# TransR without using pretrained embeddings,
# i.e, the whole model is trained from scratch.
class TransRModel(nn.Module):
def __init__(self, config):
super(TransRModel, self).__init__()
self.learning_rate = config.learning_rate
self.early_stopping_round = config.early_stopping_round
self.L1_flag = config.L1_flag
self.filter = config.filter
self.ent_embedding_size = config.ent_embedding_size
self.rel_embedding_size = config.rel_embedding_size
self.entity_total = config.entity_total
self.relation_total = config.relation_total
self.batch_size = config.batch_size
ent_weight = floatTensor(self.entity_total, self.ent_embedding_size)
rel_weight = floatTensor(self.relation_total, self.rel_embedding_size)
proj_weight = floatTensor(self.relation_total, self.rel_embedding_size * self.ent_embedding_size)
nn.init.xavier_uniform(ent_weight)
nn.init.xavier_uniform(rel_weight)
nn.init.xavier_uniform(proj_weight)
self.ent_embeddings = nn.Embedding(self.entity_total, self.ent_embedding_size)
self.rel_embeddings = nn.Embedding(self.relation_total, self.rel_embedding_size)
self.proj_embeddings = nn.Embedding(self.relation_total, self.rel_embedding_size * self.ent_embedding_size)
self.ent_embeddings.weight = nn.Parameter(ent_weight)
self.rel_embeddings.weight = nn.Parameter(rel_weight)
self.proj_embeddings.weight = nn.Parameter(proj_weight)
normalize_entity_emb = F.normalize(self.ent_embeddings.weight.data, p=2, dim=1)
normalize_relation_emb = F.normalize(self.rel_embeddings.weight.data, p=2, dim=1)
# normalize_proj_emb = F.normalize(self.proj_embeddings.weight.data, p=2, dim=1)
self.ent_embeddings.weight.data = normalize_entity_emb
self.rel_embeddings.weight.data = normalize_relation_emb
# self.proj_embeddings.weight.data = normalize_proj_emb
def forward(self, pos_h, pos_t, pos_r, neg_h, neg_t, neg_r):
pos_h_e = self.ent_embeddings(pos_h)
pos_t_e = self.ent_embeddings(pos_t)
pos_r_e = self.rel_embeddings(pos_r)
pos_proj = self.proj_embeddings(pos_r)
neg_h_e = self.ent_embeddings(neg_h)
neg_t_e = self.ent_embeddings(neg_t)
neg_r_e = self.rel_embeddings(neg_r)
neg_proj = self.proj_embeddings(neg_r)
pos_h_e = projection_transR_pytorch(pos_h_e, pos_proj)
pos_t_e = projection_transR_pytorch(pos_t_e, pos_proj)
neg_h_e = projection_transR_pytorch(neg_h_e, neg_proj)
neg_t_e = projection_transR_pytorch(neg_t_e, neg_proj)
if self.L1_flag:
pos = torch.sum(torch.abs(pos_h_e + pos_r_e - pos_t_e), 1)
neg = torch.sum(torch.abs(neg_h_e + neg_r_e - neg_t_e), 1)
else:
pos = torch.sum((pos_h_e + pos_r_e - pos_t_e) ** 2, 1)
neg = torch.sum((neg_h_e + neg_r_e - neg_t_e) ** 2, 1)
return pos, neg, pos_h_e, pos_t_e, neg_h_e, neg_t_e
# TransR with using pretrained embeddings.
# Pretrained embeddings are trained with TransE, stored in './transE_%s_%s_best.pkl',
# with first '%s' dataset name,
# second '%s' embedding size.
# Initialize projection matrix with identity matrix.
class TransRPretrainModel(nn.Module):
def __init__(self, config):
super(TransRPretrainModel, self).__init__()
self.dataset = config.dataset
self.learning_rate = config.learning_rate
self.early_stopping_round = config.early_stopping_round
self.L1_flag = config.L1_flag
self.filter = config.filter
self.ent_embedding_size = config.ent_embedding_size
self.rel_embedding_size = config.rel_embedding_size
self.entity_total = config.entity_total
self.relation_total = config.relation_total
self.batch_size = config.batch_size
with open('./transE_%s_%s_best.pkl' % (config.dataset, str(config.ent_embedding_size)), 'rb') as fr:
ent_embeddings_list = pickle.load(fr)
rel_embeddings_list = pickle.load(fr)
ent_weight = floatTensor(ent_embeddings_list)
rel_weight = floatTensor(rel_embeddings_list)
proj_weight = floatTensor(self.rel_embedding_size, self.ent_embedding_size)
nn.init.eye(proj_weight)
proj_weight = proj_weight.view(-1).expand(self.relation_total, -1)
self.ent_embeddings = nn.Embedding(self.entity_total, self.ent_embedding_size)
self.rel_embeddings = nn.Embedding(self.relation_total, self.rel_embedding_size)
self.proj_embeddings = nn.Embedding(self.relation_total, self.rel_embedding_size * self.ent_embedding_size)
self.ent_embeddings.weight = nn.Parameter(ent_weight)
self.rel_embeddings.weight = nn.Parameter(rel_weight)
self.proj_embeddings.weight = nn.Parameter(proj_weight)
def forward(self, pos_h, pos_t, pos_r, neg_h, neg_t, neg_r):
pos_h_e = self.ent_embeddings(pos_h)
pos_t_e = self.ent_embeddings(pos_t)
pos_r_e = self.rel_embeddings(pos_r)
pos_proj = self.proj_embeddings(pos_r)
neg_h_e = self.ent_embeddings(neg_h)
neg_t_e = self.ent_embeddings(neg_t)
neg_r_e = self.rel_embeddings(neg_r)
neg_proj = self.proj_embeddings(neg_r)
pos_h_e = projection_transR_pytorch(pos_h_e, pos_proj)
pos_t_e = projection_transR_pytorch(pos_t_e, pos_proj)
neg_h_e = projection_transR_pytorch(neg_h_e, neg_proj)
neg_t_e = projection_transR_pytorch(neg_t_e, neg_proj)
if self.L1_flag:
pos = torch.sum(torch.abs(pos_h_e + pos_r_e - pos_t_e), 1)
neg = torch.sum(torch.abs(neg_h_e + neg_r_e - neg_t_e), 1)
else:
pos = torch.sum((pos_h_e + pos_r_e - pos_t_e) ** 2, 1)
neg = torch.sum((neg_h_e + neg_r_e - neg_t_e) ** 2, 1)
return pos, neg, pos_h_e, pos_t_e, neg_h_e, neg_t_e
# TransD with using pretrained embeddings,
# and embeddings of entities and relations are of the same size.
# It can be viewed as a special case of TransH,
# (See "Knowledge Graph Embedding via Dynamic Mapping Matrix" paper)
# Pretrained embeddings are trained with TransE, stored in './transE_%s_%s_best.pkl',
# with first '%s' dataset name,
# second '%s' embedding size.
# Initialize projection matrices with zero matrices.
class TransDPretrainModelSameSize(nn.Module):
def __init__(self, config):
super(TransDPretrainModelSameSize, self).__init__()
self.dataset = config.dataset
self.learning_rate = config.learning_rate
self.early_stopping_round = config.early_stopping_round
self.L1_flag = config.L1_flag
self.filter = config.filter
self.embedding_size = config.embedding_size
self.entity_total = config.entity_total
self.relation_total = config.relation_total
self.batch_size = config.batch_size
with open('./transE_%s_%s_best.pkl' % (config.dataset, str(config.embedding_size)), 'rb') as fr:
ent_embeddings_list = pickle.load(fr)
rel_embeddings_list = pickle.load(fr)
ent_weight = floatTensor(ent_embeddings_list)
rel_weight = floatTensor(rel_embeddings_list)
ent_proj_weight = floatTensor(self.entity_total, self.embedding_size)
rel_proj_weight = floatTensor(self.relation_total, self.embedding_size)
ent_proj_weight.zero_()
rel_proj_weight.zero_()
self.ent_embeddings = nn.Embedding(self.entity_total, self.embedding_size)
self.rel_embeddings = nn.Embedding(self.relation_total, self.embedding_size)
self.ent_proj_embeddings = nn.Embedding(self.entity_total, self.embedding_size)
self.rel_proj_embeddings = nn.Embedding(self.relation_total, self.embedding_size)
self.ent_embeddings.weight = nn.Parameter(ent_weight)
self.rel_embeddings.weight = nn.Parameter(rel_weight)
self.ent_proj_embeddings.weight = nn.Parameter(ent_proj_weight)
self.rel_proj_embeddings.weight = nn.Parameter(rel_proj_weight)
def forward(self, pos_h, pos_t, pos_r, neg_h, neg_t, neg_r):
pos_h_e = self.ent_embeddings(pos_h)
pos_t_e = self.ent_embeddings(pos_t)
pos_r_e = self.rel_embeddings(pos_r)
pos_h_proj = self.ent_proj_embeddings(pos_h)
pos_t_proj = self.ent_proj_embeddings(pos_t)
pos_r_proj = self.rel_proj_embeddings(pos_r)
neg_h_e = self.ent_embeddings(neg_h)
neg_t_e = self.ent_embeddings(neg_t)
neg_r_e = self.rel_embeddings(neg_r)
neg_h_proj = self.ent_proj_embeddings(neg_h)
neg_t_proj = self.ent_proj_embeddings(neg_t)
neg_r_proj = self.rel_proj_embeddings(neg_r)
pos_h_e = projection_transD_pytorch_samesize(pos_h_e, pos_h_proj, pos_r_proj)
pos_t_e = projection_transD_pytorch_samesize(pos_t_e, pos_t_proj, pos_r_proj)
neg_h_e = projection_transD_pytorch_samesize(neg_h_e, neg_h_proj, neg_r_proj)
neg_t_e = projection_transD_pytorch_samesize(neg_t_e, neg_t_proj, neg_r_proj)
if self.L1_flag:
pos = torch.sum(torch.abs(pos_h_e + pos_r_e - pos_t_e), 1)
neg = torch.sum(torch.abs(neg_h_e + neg_r_e - neg_t_e), 1)
else:
pos = torch.sum((pos_h_e + pos_r_e - pos_t_e) ** 2, 1)
neg = torch.sum((neg_h_e + neg_r_e - neg_t_e) ** 2, 1)
return pos, neg, pos_h_e, pos_t_e, neg_h_e, neg_t_e