-
Notifications
You must be signed in to change notification settings - Fork 0
/
model.py
174 lines (121 loc) · 6.88 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
''' * Stain-Color Normalization by using Deep Convolutional GMM (DCGMM).
* VCA group, Eindhoen University of Technology.
* Ref: Zanjani F.G., Zinger S., Bejnordi B.E., van der Laak J. AWM, de With P. H.N., "Histopathology Stain-Color Normalization Using Deep Generative Models", (2018).'''
import tensorflow as tf
import ops as utils
from GMM_M_Step import GMM_M_Step
class CNN(object):
def __init__(self, name, config, is_train):
self.name = name
self.is_train = is_train
self.reuse = None
with tf.variable_scope(self.name, reuse=self.reuse):
G_W1 = utils.weight_variable([3, 3, 1, 32], name="G_W1")
G_b1 = utils.bias_variable([32], name="G_b1")
G_W2 = utils.weight_variable([3, 3, 32, 64], name="G_W2")
G_b2 = utils.bias_variable([64], name="G_b2")
G_W3 = utils.weight_variable([3, 3, 64, 64], name="G_W3")
G_b3 = utils.bias_variable([64], name="G_b3")
G_W4 = utils.weight_variable([3, 3, 64, 128], name="G_W4")
G_b4 = utils.bias_variable([128], name="G_b4")
G_W5 = utils.weight_variable([3, 3, 128, 128], name="G_W5")
G_b5 = utils.bias_variable([128], name="G_b5")
G_W6 = utils.weight_variable([3, 3, 128, 128], name="G_W6")
G_b6 = utils.bias_variable([128], name="G_b6")
G_W7 = utils.weight_variable([3, 3, 128, 64], name="G_W7")
G_b7 = utils.bias_variable([64], name="G_b7")
G_W8 = utils.weight_variable([1, 1, 64, 32], name="G_W8")
G_b8 = utils.bias_variable([32], name="G_b8")
G_W9 = utils.weight_variable([3, 3, 32, config.ClusterNo], name="G_W9")
G_b9 = utils.bias_variable([config.ClusterNo], name="G_b9")
self.Param = {'G_W1':G_W1, 'G_b1':G_b1,
'G_W2':G_W2, 'G_b2':G_b2,
'G_W3':G_W3, 'G_b3':G_b3,
'G_W4':G_W4, 'G_b4':G_b4,
'G_W5':G_W5, 'G_b5':G_b5,
'G_W6':G_W6, 'G_b6':G_b6,
'G_W7':G_W7, 'G_b7':G_b7,
'G_W8':G_W8, 'G_b8':G_b8,
'G_W9':G_W9, 'G_b9':G_b9 }
if self.reuse is None:
self.var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=self.name)
self.saver = tf.train.Saver(self.var_list)
self.reuse = True
def __call__(self, D):
with tf.variable_scope(self.name, reuse=self.reuse):
D_norm = D
G_conv1 = utils.conv2d_basic(D_norm, self.Param['G_W1'], self.Param['G_b1'])
G_relu1 = tf.nn.relu(G_conv1, name="G_relu1")
G_conv2 = utils.conv2d_basic(G_relu1, self.Param['G_W2'], self.Param['G_b2'])
G_relu2 = tf.nn.relu(G_conv2, name="G_relu2")
G_pool1 = utils.max_pool_2x2(G_relu2)
G_conv3 = utils.conv2d_basic(G_pool1, self.Param['G_W3'], self.Param['G_b3'])
G_relu3 = tf.nn.relu(G_conv3, name="G_relu3")
G_conv4 = utils.conv2d_basic(G_relu3, self.Param['G_W4'], self.Param['G_b4'])
G_relu4 = tf.nn.relu(G_conv4, name="G_relu4")
G_pool2 = utils.max_pool_2x2(G_relu4)
G_conv5 = utils.conv2d_basic(G_pool2, self.Param['G_W5'], self.Param['G_b5'])
G_relu5 = tf.nn.relu(G_conv5, name="G_relu5")
output_shape = G_relu5.get_shape().as_list()
output_shape[1] *= 2
output_shape[2] *= 2
output_shape[3] = self.Param['G_W6'].get_shape().as_list()[2]
G_rs6 = tf.image.resize_images(G_relu5, output_shape[1:3], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
G_conv6 = utils.conv2d_basic(G_rs6, self.Param['G_W6'], self.Param['G_b6'])
G_relu6 = tf.nn.relu(G_conv6, name="G_rs6")
output_shape = G_relu6.get_shape().as_list()
output_shape[1] *= 2
output_shape[2] *= 2
output_shape[3] = self.Param['G_W7'].get_shape().as_list()[2]
G_rs7 = tf.image.resize_images(G_relu6, output_shape[1:3], method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
G_conv7 = utils.conv2d_basic(G_rs7, self.Param['G_W7'], self.Param['G_b7'])
G_relu7 = tf.nn.relu(G_conv7, name="G_rs7")
G_conv8 = utils.conv2d_basic(G_relu7, self.Param['G_W8'], self.Param['G_b8'])
G_relu8 = tf.nn.relu(G_conv8, name="G_relu8")
G_conv9 = utils.conv2d_basic(G_relu8, self.Param['G_W9'], self.Param['G_b9'])
Gama = tf.nn.softmax(G_conv9, name="G_latent_softmax")
return Gama
class DCGMM(object):
def __init__(self, sess, config, name, is_train):
self.sess = sess
self.name = name
self.is_train = is_train
self.X_hsd = tf.placeholder(tf.float32, shape=[config.batch_size, config.im_size, config.im_size, 3], name="original_color_image")
self.D, h_s = tf.split(self.X_hsd,[1,2], axis=3)
self.E_Step = CNN("E_Step", config, is_train=self.is_train)
self.Gama = self.E_Step(self.D)
self.loss, self.Mu, self.Std = GMM_M_Step(self.X_hsd, self.Gama, config.ClusterNo, name='GMM_Statistics')
if self.is_train:
self.optim = tf.train.AdamOptimizer(config.lr)
self.train = self.optim.minimize(self.loss, var_list=self.E_Step.Param)
ClsLbl = tf.arg_max(self.Gama, 3)
ClsLbl = tf.cast(ClsLbl, tf.float32)
ColorTable = [[255,0,0],[0,255,0],[0,0,255],[255,255,0], [0,255,255], [255,0,255]]
colors = tf.cast(tf.constant(ColorTable), tf.float32)
Msk = tf.tile(tf.expand_dims(ClsLbl, axis=3),[1,1,1,3])
for k in range(0, config.ClusterNo):
ClrTmpl = tf.einsum('anmd,df->anmf', tf.expand_dims(tf.ones_like(ClsLbl), axis=3), tf.reshape(colors[k,...],[1,3]))
Msk = tf.where(tf.equal(Msk,k), ClrTmpl, Msk)
self.X_rgb = utils.HSD2RGB(self.X_hsd)
tf.summary.image("1.Input_image", self.X_rgb*255.0, max_outputs=2)
tf.summary.image("2.Gamma_image", Msk, max_outputs=2)
tf.summary.image("3.Density_image", self.D*255.0, max_outputs=2)
tf.summary.scalar("loss", self.loss)
self.summary_op = tf.summary.merge_all()
self.saver = tf.train.Saver()
self.summary_writer = tf.summary.FileWriter(config.logs_dir, self.sess.graph)
self.sess.run(tf.global_variables_initializer())
ckpt = tf.train.get_checkpoint_state(config.logs_dir)
if ckpt and ckpt.model_checkpoint_path:
self.saver.restore(self.sess, ckpt.model_checkpoint_path)
print("Model restored...")
def fit(self, X):
_, loss, summary_str = self.sess.run([self.train, self.loss, self.summary_op], {self.X_hsd:X})
return loss, summary_str, self.summary_writer
def deploy(self, X):
mu, std, gama, summary_str = self.sess.run([self.Mu, self.Std, self.Gama, self.summary_op], {self.X_hsd:X})
return mu, std, gama
def save(self, dir_path):
self.E_Step.save(self.sess, dir_path+"/model.ckpt")
def restore(self, dir_path):
self.E_Step.restore(self.sess, dir_path+"/model.ckpt")