-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.tex
111 lines (57 loc) · 1.69 KB
/
test.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
\documentclass{article}
\usepackage{amsmath, amssymb}
\begin{document}
$\forall x > 0(x^ax^b = x^{a+b})$
$\forall x > 0(x^ax^b = x^{a+b})$
$\forall x,y > 0((xy)^a = x^ay^a)$
$|x+y| \le |x|+|y|$
$|xy| = |x| |y|$
$(|xy| = |x|) |y|$
$x+y = y+x$
$(x+y)+z = x+(y+z)$
$x+0 = x$
$x+-x = 0$
$-x+x = 0$
$xyz = x(yz)$
$x(y+z) = xy+xz$
$(x+y)\cdot z = x\cdot z+y\cdot z$
$a|b \iff \exists c \in \mathbb Z (ac = b)$
$a\mid b \iff \exists c \in \mathbb Z (ac = b)$
$A\cup B = \{x \mid x \in A \lor x \in B\}$
$d/dxf(x) = \lim_{h\to 0} (f(x+h)-f(x))/h$
$d/dx(f(x)g(x)) = d/dxf(x)g(x)+f(x)d/dxg(x)$
$(f(g))' = f'g+(f(g))'$
$x+\cdot y$
$\int_a^bf(x)dx = \lim_{n\to \infty } (\sum_{i = 1}^nf(x_i^*)(b-a)/n)$
$\int f(x)dx = F(x)+C$
$\int_C f(x)dx = 0$
$\prod_{i = 1}^{n+1}a_i = (\prod_{i = 1}^na_i)a_{n+1}$
$\delta +1$
$\lim_{x\to a} f(x) = L \iff \forall \varepsilon > 0\exists \delta > 0\forall x(0 < |x-a| < \delta \implies |f(x)-L| < \varepsilon )$
$\sin xy$
$\sin x+y$
$\sin x$
$f(x)y$
$a:A\times A\to A$
$A \models \varphi $
$1/2x$
$(1/2)\cdot x$
$f(x,y,z,u,v,w)$
$x R y \land y R z \implies x R z$
$f(x)^2$
$f^2x = f(x)^2$
$\sin ^2x$
$n:\mathbb N $
$f'x = (f(x))' = d/dxf(x)$
$\mathbb N \subset \mathbb Z \subset \mathbb Q \subset \mathbb R \subset \mathbb C $
$\lim f(x)$
$2(1+1) = -21.0$
$f[X] = \{f(x) \mid x \in X\}$
$((A\times A)\times A)\times A\to (A\to (A\to (A\to A)))$
$h:\mathbb R ^m\to \mathbb R ^n$
$(f+g)x$
$f,\dots ,g$
$f$
$\mbox{abso}(\vee ,\wedge ) = ((x\vee y)\wedge x = x)$
$\mbox{LatticeAx}(\vee ,\wedge ) = (\mbox{SemilatticeAx}(\vee ) \land \mbox{SemilatticeAx}(\wedge ) \land \mbox{abso}(\vee ,\wedge ) \land \mbox{abso}(\wedge ,\vee ))$
\end{document}