-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfluid_sim.py
148 lines (134 loc) · 6.14 KB
/
fluid_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""
Lattice-Boltzmann method for fluid simulation
Simple rectangular barrier
@author: Jishnu
"""
import numpy, time, matplotlib.pyplot, matplotlib.animation
height = 80 # dimensions of lattice
width = 200
viscosity = 0.02 # viscosity
omega = 1 / (3*viscosity + 0.5) # parameter for relaxation
u0 = 0.1 # initial and in-flow speed
f_n = 4.0/9.0 # lattice-Boltzmann weight factors
o_n = 1.0/9.0
o_36 = 1.0/36.0
performanceData = True # True if performance data is needed
# Initialize arrays --steady rightward flow:
n0 = f_n * (numpy.ones((height,width)) - 1.5*u0**2) # particle densities along 9 directions
nN = o_n * (numpy.ones((height,width)) - 1.5*u0**2)
nS = o_n * (numpy.ones((height,width)) - 1.5*u0**2)
nE = o_n * (numpy.ones((height,width)) + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nW = o_n * (numpy.ones((height,width)) - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nNE = o_36 * (numpy.ones((height,width)) + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nSE = o_36 * (numpy.ones((height,width)) + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nNW = o_36 * (numpy.ones((height,width)) - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nSW = o_36 * (numpy.ones((height,width)) - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
rho = n0 + nN + nS + nE + nW + nNE + nSE + nNW + nSW # macroscopic density
ux = (nE + nNE + nSE - nW - nNW - nSW) / rho # macroscopic x velocity
uy = (nN + nNE + nNW - nS - nSE - nSW) / rho # macroscopic y velocity
barrier = numpy.zeros((height,width), bool) # True wherever there's a barrier
barrier[(height//2)-8:(height//2)+8, (height//2)-4:(height//2)+4] = True # simple linear barrier
barrierN = numpy.roll(barrier, 1, axis=0) # sites just north of barriers
barrierS = numpy.roll(barrier, -1, axis=0) # sites just south of barriers
barrierE = numpy.roll(barrier, 1, axis=1)
barrierW = numpy.roll(barrier, -1, axis=1)
barrierNE = numpy.roll(barrierN, 1, axis=1)
barrierNW = numpy.roll(barrierN, -1, axis=1)
barrierSE = numpy.roll(barrierS, 1, axis=1)
barrierSW = numpy.roll(barrierS, -1, axis=1)
def stream():
global nN, nS, nE, nW, nNE, nNW, nSE, nSW
nN = numpy.roll(nN, 1, axis=0) # axis 0 is north-south; + direction is north
nNE = numpy.roll(nNE, 1, axis=0)
nNW = numpy.roll(nNW, 1, axis=0)
nS = numpy.roll(nS, -1, axis=0)
nSE = numpy.roll(nSE, -1, axis=0)
nSW = numpy.roll(nSW, -1, axis=0)
nE = numpy.roll(nE, 1, axis=1) # axis 1 is east-west; + direction is east
nNE = numpy.roll(nNE, 1, axis=1)
nSE = numpy.roll(nSE, 1, axis=1)
nW = numpy.roll(nW, -1, axis=1)
nNW = numpy.roll(nNW, -1, axis=1)
nSW = numpy.roll(nSW, -1, axis=1)
# Using boolean arrays to handle barrier collisions (bounce-back):
nN[barrierN] = nS[barrier]
nS[barrierS] = nN[barrier]
nE[barrierE] = nW[barrier]
nW[barrierW] = nE[barrier]
nNE[barrierNE] = nSW[barrier]
nNW[barrierNW] = nSE[barrier]
nSE[barrierSE] = nNW[barrier]
nSW[barrierSW] = nNE[barrier]
def collide():
"""
Calculates the collision step of the Lattice Boltzmann Method (LBM) algorithm.
Updates the macroscopic variables `rho`, `ux`, and `uy` based on the population
distributions `n0`, `nN`, `nS`, `nE`, `nW`, `nNE`, `nNW`, `nSE`, and `nSW`.
Parameters:
None
Returns:
None
"""
global rho, ux, uy, n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW
rho = n0 + nN + nS + nE + nW + nNE + nSE + nNW + nSW
ux = (nE + nNE + nSE - nW - nNW - nSW) / rho
uy = (nN + nNE + nNW - nS - nSE - nSW) / rho
ux2 = ux * ux
uy2 = uy * uy
u2 = ux2 + uy2
omu215 = 1 - 1.5*u2
uxuy = ux * uy
n0 = (1-omega)*n0 + omega * f_n * rho * omu215
nN = (1-omega)*nN + omega * o_n * rho * (omu215 + 3*uy + 4.5*uy2)
nS = (1-omega)*nS + omega * o_n * rho * (omu215 - 3*uy + 4.5*uy2)
nE = (1-omega)*nE + omega * o_n * rho * (omu215 + 3*ux + 4.5*ux2)
nW = (1-omega)*nW + omega * o_n * rho * (omu215 - 3*ux + 4.5*ux2)
nNE = (1-omega)*nNE + omega * o_36 * rho * (omu215 + 3*(ux+uy) + 4.5*(u2+2*uxuy))
nNW = (1-omega)*nNW + omega * o_36 * rho * (omu215 + 3*(-ux+uy) + 4.5*(u2-2*uxuy))
nSE = (1-omega)*nSE + omega * o_36 * rho * (omu215 + 3*(ux-uy) + 4.5*(u2-2*uxuy))
nSW = (1-omega)*nSW + omega * o_36 * rho * (omu215 + 3*(-ux-uy) + 4.5*(u2+2*uxuy))
# Force steady rightward flow at ends
# no need to set 0, N, and S component
nE[:,0] = o_n * (1 + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nW[:,0] = o_n * (1 - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nNE[:,0] = o_36 * (1 + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nSE[:,0] = o_36 * (1 + 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nNW[:,0] = o_36 * (1 - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
nSW[:,0] = o_36 * (1 - 3*u0 + 4.5*u0**2 - 1.5*u0**2)
# Compute curl of the velocity field:
def curl(ux, uy):
"""
Calculates the curl of a vector field.
Parameters:
ux (numpy.ndarray): The x-component of the vector field.
uy (numpy.ndarray): The y-component of the vector field.
Returns:
numpy.ndarray: The curl of the vector field.
"""
return numpy.roll(uy,-1,axis=1) - numpy.roll(uy,1,axis=1) - numpy.roll(ux,-1,axis=0) + numpy.roll(ux,1,axis=0)
# for animation.
theFig = matplotlib.pyplot.figure(figsize=(8,3))
fluidImage = matplotlib.pyplot.imshow(curl(ux, uy), origin='lower', norm=matplotlib.pyplot.Normalize(-.1,.1),
cmap=matplotlib.pyplot.get_cmap('jet'), interpolation='none')
bImageArray = numpy.zeros((height, width, 4), numpy.uint8) # an RGBA image
bImageArray[barrier,3] = 255 # set alpha=255 barrier sites only
barrierImage = matplotlib.pyplot.imshow(bImageArray, origin='lower', interpolation='none')
# Function called for each successive animation frame:
startTime = time.perf_counter()
#frameList = open('frameList.txt','w') # file containing list of images
def nextFrame(arg): # (arg is the frame number, which we don't need)
global startTime
if performanceData and (arg%100 == 0) and (arg > 0):
endTime = time.perf_counter()
print( "%1.1f" % (100/(endTime-startTime)), 'frames per second' )
startTime = endTime
#frameName = "frame%04d.png" % arg
#matplotlib.pyplot.savefig(frameName)
#frameList.write(frameName + '\n')
for step in range(15): # adjust number of steps for smooth animation
stream()
collide()
fluidImage.set_array(curl(ux, uy))
return (fluidImage, barrierImage) # return the figure elements to redraw
animate = matplotlib.animation.FuncAnimation(theFig, nextFrame, interval=0.5, blit=True)
matplotlib.pyplot.show()