From e2608a91292e573fe5ebbd46d2fe63051d919d00 Mon Sep 17 00:00:00 2001 From: Jishnu Date: Sat, 20 Jan 2024 05:26:24 +0530 Subject: [PATCH] 12 --- README.org | 15 +++-- index.html | 159 +++++++++++++++++++++++++++++++++++++++++++ notebook.css | 187 +++++++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 356 insertions(+), 5 deletions(-) create mode 100644 index.html create mode 100644 notebook.css diff --git a/README.org b/README.org index a4165f6..b07d46f 100644 --- a/README.org +++ b/README.org @@ -1,12 +1,17 @@ :PROPERTIES: :ID: 455c46bb-952b-4978-b48e-554565046442 :END: -#+TITLE: Numerical-analysis +#+TITLE: Numerical Analysis #+AUTHOR: Jishnu Rajendran - -[[attachment:num-ana.png]] - -[[attachment:num-ana.png]] +#+HTML_HEAD: +#+OPTIONS: toc:nil +#+OPTIONS: title:nil +#+OPTIONS: html-style:nil +#+OPTIONS: html-scripts:nil +#+OPTIONS: html-postamble:nil +#+OPTIONS: broken-links:mark + +[[file: num-ana.png]] * Root Finding Methods ** [[https://en.wikipedia.org/wiki/Newton%27s_method][Newton's method]] diff --git a/index.html b/index.html new file mode 100644 index 0000000..6684d53 --- /dev/null +++ b/index.html @@ -0,0 +1,159 @@ + + + + + + + +Numerical Analysis + + + + + + + + +
+ +
+

 num-ana.png +

+
+
+

1. Root Finding Methods

+
+
+
+

1.1. Newton’s method

+
+

+Newton’s method (also known as the Newton–Raphson method) is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function. The process is repeated as +\[ x_{n+1}=x_{n}-{\frac {f(x_{n})}{f'(x_{n})}} \] +

+
+
+
+

1.2. Fixed point method

+
+

+Fixed-point iteration is a method of computing fixed points of iterated functions. More specifically, given a function f defined on the real numbers with real values and given a point x0 in the domain of f, the fixed point iteration is +\[ x_{n+1}=f(x_{n}),\,n=0,1,2,\dots\] +

+
+
+
+

1.3. Secant method

+
+

+Secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite difference approximation of Newton’s method. +\[ x_{n}=x_{n-1}-f(x_{n-1}){\frac {x_{n-1}-x_{n-2}}{f(x_{n-1})-f(x_{n-2})}}={\frac {x_{n-2}f(x_{n-1})-x_{n-1}f(x_{n-2})}{f(x_{n-1})-f(x_{n-2})}}. \] +

+
+
+
+
+

2. Interpolation techniques

+
+
+
+

2.1. Hermite Interpolation

+
+

+Hermite Interpolation is a method of interpolating data points as a polynomial function. The generated Hermite interpolating polynomial is closely related to the Newton polynomial, in that both are derived from the calculation of divided differences. +

+
+
+
+

2.2. Lagrange Interpolation

+
+

+Lagrange polynomials are used for polynomial interpolation. See Wikipedia +

+
+
+
+

2.3. Newton’s Interpolation

+
+

+Newton’s divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. Divided differences is a recursive division process. The method can be used to calculate the coefficients in the interpolation polynomial in the Newton form. +

+
+
+
+
+

3. Integration methods

+
+
+
+

3.1. Euler Method

+
+

+Euler method (also called forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta method. +\[ y_{n+1} = y_{n} + h f(t_{n} , y_{n}) \] +

+
+
+
+

3.2. Newton–Cotes Method

+
+

+Newton–Cotes formulae, also called the Newton–Cotes quadrature rules or simply Newton–Cotes rules, are a group of formulae for numerical integration (also called quadrature) based on evaluating the integrand at equally spaced points. They are named after Isaac Newton and Roger Cotes. +

+
+
+
+

3.3. Predictor–Corrector Method

+
+

+Predictor–Corrector methods belong to a class of algorithms designed to integrate ordinary differential equations – to find an unknown function that satisfies a given differential equation. All such algorithms proceed in two steps: +

+
    +
  1. The initial, “prediction” step, starts from a function fitted to the function-values and derivative-values at a preceding set of points to extrapolate (“anticipate”) this function’s value at a subsequent, new point.
  2. +
  3. The next, “corrector” step refines the initial approximation by using the predicted value of the function and another method to interpolate that unknown function’s value at the same subsequent point.
  4. +
+
+
+
+

3.4. Trapizoidal method

+
+

+Trapezoidal rule is a technique for approximating the definite integral. The trapezoidal rule works by approximating the region under the graph of the function f(x) as a trapezoid and calculating its area. +\[ \int _{a}^{b}f(x)\,dx\approx \sum _{k=1}^{N}{\frac {f(x_{k-1})+f(x_{k})}{2}}\Delta x_{k}\] +

+
+
+
+
+ + diff --git a/notebook.css b/notebook.css new file mode 100644 index 0000000..94427f4 --- /dev/null +++ b/notebook.css @@ -0,0 +1,187 @@ +/* + * Cascading stylesheet for GNU Emacs notebooks + * Nicolas P. Rougier - December 202 + * Released under a Creative Commons CC-BY 4.0 license + */ + +@charset "utf-8"; +@import url('https://fonts.googleapis.com/css?family=Roboto:300,400,500'); +@import url('https://fonts.googleapis.com/css?family=Roboto Slab:300,400,500'); +@import url('https://fonts.googleapis.com/css?family=Roboto Condensed:300,400,500'); + +body { + font-family: "Roboto", sans; + font-size: 16px; + font-weight: 300; + line-height: 1.3em; +} + +#content { + margin: 0 auto; + max-width: 720px; + margin-top: 5em; + margin-bottom: 5em; +} + +b { + font-weight: 400; +} + +a { + color: #673AB7; + text-decoration: none; +/* font-weight: 400;*/ +} + +h1, h2, h3 { + font-family: "Roboto Slab", serif; + font-weight: 400; +} + +h1.title { + font-weight: 400; + line-height: 0.75em; + padding-top: 1.em; + padding-bottom: 0.5em; +} +h1 span.subtitle { + font-size: 16px; + font-weight: 300; +} +h2 { + clear: both; + padding-top: 1em; + padding-bottom: 0em; +} + + +p { + text:align: justify; +/* column-count: 2;*/ + text-align: justify; + text-justify: inter-word; + hyphens: auto; +} + +div.abstract { + background: #f9f9ff; + padding: .75em 1em .75em 1em; + line-height: 1.25em; + font-family: "Roboto Condensed", sans-serif; + border: .5px solid #555599; + padding-bottom: 0.25em; +} +div.abstract p { + column-count: 1; + margin: 0 0 0.5em 0; +} + +div.figure { + padding: 0.50em .00em 0.75em .00em; +} +div.figure p { + column-count: 1; + line-height: 1.2em; + font-family: "Roboto Condensed", sans-serif; +} +div.sidefig::after { + display: block; + content: ""; + clear: both; +} +div.sidefig div.figure p:nth-of-type(1) { + width: 60%; + float: left; +} +div.sidefig div.figure p:nth-of-type(2) { + font-size: 95%; + /* border-top: 1px solid black; */ + background-color: #f9f9ff; + padding: 1em; +} +div.sidefig div.figure img { + width: 100%; +} + +div.figure img { + width: 100%; +} +span.figure-number { + font-weight: 500; +} + +/* --- Footnote ------------------------------------------------------------ */ +div.footpara { + display: inline-block; +} +h2.footnotes { + font-size: 16px; + width: 50%; + border-bottom: 1px solid black; +} +p.footpara { + column-count: 1; + line-height: 1.25em; + font-family: "Roboto Condensed", sans-serif; + margin: 0; +} +sup { + font-size: 0.75em; + vertical-align: top; + position: relative; top: -0.5em; +} + +/* --- Block quote --------------------------------------------------------- */ +blockquote p { + font-size: 95%; + line-height: 1.15em; + column-count: 1; + padding-top: 1em; + padding-bottom: 1.5em; +} + +/* --- Source blocks ------------------------------------------------------- */ +code { + font-family: "Roboto Mono", sans-serif; + font-weight: 300; +} +pre.example::before { + display: block; + background-color: #fffff; + content: "Output"; + font-family: "Roboto Condensed", sans-serif; + font-weight: 400; + padding-bottom: 0.25em; +} + +pre.example { + font-size: 95%; + background-color: #f9f9ff; + line-height: 1.4em; + font-family: "Roboto Mono", sans-serif; + font-weight: 300; + padding: 0.5em 1em 0.5em 1em; +} + +pre.src { + font-size: 95%; + line-height: 1.4em; + font-family: "Roboto Mono", sans-serif; + font-weight: 300; + padding: 0; + margin: 0; +} +div.org-src-container { + border: .5px solid #555599; + padding: 0.50em 1.00em 0.75em 1.00em; + background-color: #f9f9ff; + margin-bottom: 0.5em; +} +label.org-src-name { + display: block; + font-family: "Roboto Condensed", sans-serif; + padding-bottom: .25em; +} +span.listing-number { + font-weight: 500; +}